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Abstract An analysis is presented of the phase transition of the quantum Ising model with
transverse field on the d-dimensional hypercubic lattice. It is shown that there is a unique
sharp transition. The value of the critical point is calculated rigorously in one dimension.
The first step is to express the quantum Ising model in terms of a (continuous) classical Ising
model in d + 1 dimensions. A so-called ‘random-parity’ representation is developed for the
latter model, similar to the random-current representation for the classical Ising model on a
discrete lattice. Certain differential inequalities are proved. Integration of these inequalities
yields the sharpness of the phase transition, and also a number of other facts concerning the
critical and near-critical behaviour of the model under study.

Keywords Quantum Ising model · Ising model · Random-parity representation ·
Random-current representation · Random-cluster model · Differential inequality · Phase
transition

1 Introduction

Geometric or ‘graphical’ methods have been very useful in the rigorous study of lattice
models in classical statistical mechanics. Of the many examples, we mention the use of the
random-cluster (or ‘FK’) representation to prove the existence of non-translation-invariant
‘Dobrushin’ states in the q-state Potts model [20]; the use of the related ‘loop’ represen-
tation to prove conformal invariance for the two-dimensional Ising model [36]; the use of
the random-current representation to prove the sharpness of the phase transition in classical
Ising models [7]. In contrast, graphical methods for quantum lattice models have received
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less attention. We shall formulate a so-called ‘random-parity representation’ for the quan-
tum Ising model on a graph G (or, more precisely, for the corresponding ‘continuous Ising
model’ on G × R, [5, 9]), and shall use it to prove the sharpness of the phase transition for
this model in a general number of dimensions. The random-parity representation is a cousin
of the random-current representation in [1, 7].

Let L = (V ,E) be a finite graph. The Hamiltonian of the quantum Ising model with
transverse field on L is the matrix (or ‘operator’)

H = −1

2
λ
∑

e=uv∈E

σ (3)
u σ (3)

v − δ
∑

v∈V

σ (1)
v , (1.1)

acting on the Hilbert space H =⊗v∈V C
2. Here, the Pauli spin- 1

2 matrices are given as

σ (3)
v =

(
1 0
0 −1

)
, σ (1)

v =
(

0 1
1 0

)
. (1.2)

The constants λ, δ > 0 in (1.1) are the spin-coupling and transverse-field intensities, respec-
tively. The basic operator of the quantum Ising model is e−βH where β > 0. The model
was introduced in [32], and has been widely studied since. See, for example, the references
in [27].

It is standard (see [5, 9] for example) that the quantum Ising model on L possesses a type
of ‘path integral representation’, which expresses it as a type of classical Ising model (or
equivalently as a continuum random-cluster model with q = 2) on the continuous space V ×
[0, β]. This representation permits the use of geometrical methods in studying the behaviour
of the original quantum model. In particular, it is a useful way of establishing the existence
of the infinite-volume limits as β → ∞ and |V | → ∞, and of relating the phase transition
of the quantum model to that of the continuous classical model.

The main technique of this article is a type of random-current representation, called the
‘random-parity’ representation, for the Ising model on V ×R. This enables a detailed analy-
sis of the phase transition of the latter model, and hence of the related quantum model.
Further details and references will be provided in the next section.

The quantum model is said to be in the ‘ground state’ when the limit β → ∞ is taken.
The value of β appears in the superscript of quantities that follow; when the superscript is
∞, this is to be interpreted as the relevant ground-state quantity.

Our main choice for L is a box in the d-dimensional cubic lattice Z
d where d ≥ 1, with

a periodic boundary condition, and we shall pass to the infinite-volume limit as L ↑ Z
d .

(Similar results hold for other lattices, and for summable translation-invariant interactions.)
The model is over-parametrized. We shall normally assume δ = 1, and write ρ = λ/δ, while
noting that the same analysis holds for δ ∈ (0,∞). As remarked above, one may study the
quantum phase transition via that of the Ising model on the continuum Z

d ×[0, β] and, in the
latter case, one may introduce the notions of magnetization M = Mβ(ρ,γ ) and (magnetic)
susceptibility χ = χβ(ρ, γ ), where γ denotes external field. The critical point ρc = ρ

β
c is

given by

ρβ
c := inf{ρ : Mβ

+(ρ) > 0}, (1.3)

where

M
β
+(ρ) := lim

γ↓0
Mβ(ρ,γ ), (1.4)
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is the magnetization in the limiting state 〈·〉β+ as γ ↓ 0. It may be proved by standard methods
that:

if d ≥ 2: 0 < ρ
β
c < ∞ for β ∈ (0,∞],

if d = 1: ρ
β
c = ∞ for β ∈ (0,∞), 0 < ρ∞

c < ∞.
(1.5)

When β < ∞, the magnetization, susceptibility, and critical values depend also on the para-
meter λ, but we suppress this for brevity of notation.

Complete statements of our main results are deferred until Sects. 6 and 7. Here are two
examples of what can be proved.

Theorem 1.1 Let u,v ∈ Z
d where d ≥ 1, and s, t ∈ R. For β ∈ (0,∞]:

(i) if 0 < ρ < ρ
β
c , the two-point correlation function 〈σ(u,s)σ(v,t)〉β+ of the Ising model on

Z
d × R decays exponentially to 0 as |u − v| + |s − t | → ∞,

(ii) if ρ > ρ
β
c , 〈σ(u,s)σ(v,t)〉β+ ≥ M

β
+(ρ)2 > 0.

Theorem 1.2 Let β ∈ (0,∞]. In the notation of Theorem 1.1, there exists c = c(d) > 0 such
that

M
β
+(ρ) ≥ c(ρ − ρβ

c )1/2 for ρ > ρβ
c .

These and other facts will be stated and proved in Sect. 6. Their implications for the
infinite-volume quantum model will be elaborated in the next section, see in particular
(2.12)–(2.14). Roughly speaking, they imply that the two-point function of the quantum
model decays exponentially when ρ < ρ

β
c , and is uniformly bounded below by c(ρ − ρ

β
c )

when ρ > ρ
β
c .

The approach used here is to prove a family of differential inequalities for the magnetiza-
tion Mβ(ρ,γ ). This parallels the methods established in [4, 7] for the analysis of the phase
transitions in percolation and Ising models on discrete lattices, and indeed our arguments
are closely related to those of [7]. Whereas new problems arise in the current context and
require treatment, certain aspects of the analysis presented here are simpler than the corre-
sponding steps of [7]. The application to the quantum model imposes a periodic boundary
condition in the β direction; the same conclusions are valid for the space–time Ising model
with a free boundary condition.

The critical value ρ
β
c depends of course on the number of dimensions. We shall use

planar duality to show that ρ∞
c = 2 when d = 1, and in addition that the transition is of

second order in that M∞+ (2) = 0. See Theorem 7.1. The one-dimensional critical point has
been calculated by other means in the quantum case, but we believe that the current proof is
valuable. Two applications to the work of [11, 27] are summarized in Sect. 7.

Here is a brief outline of the contents of this article. Formal definitions are presented
in Sect. 2. The random-parity representation of the quantum Ising model is described in
Sect. 3. This representation may at first sight seem quite different from the random-current
representation of the classical Ising model on a discrete lattice. It requires more work to set
up than does its discrete cousin, but once in place it works in a very similar, and sometimes
simpler, manner. We then state and prove, in Sect. 4.1, the fundamental ‘switching lemma’.
In Sect. 4.2 are presented a number of important consequences of the switching lemma, in-
cluding GHS and Simon–Lieb inequalities, as well as other useful inequalities and identities.
In Sect. 5, we prove the somewhat more involved differential inequality of the forthcoming
Theorem 2.2, which is similar to the main inequality of [7]. Our main results follow from
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Theorem 2.2 in conjunction with the results of Sect. 4.2. Finally, in Sects. 6 and 7, we give
rigorous formulations and proofs of our main results.

We mention that the continuous Ising model possesses a representation of random-
cluster-type; see, for example, [9, 25, 27]. This is convenient for proving various facts in-
cluding the existence of infinite-volume limits. Only occasional use is made of the random-
cluster representation here, and full details are omitted. See Remark 6.1.

Remark 1.3 There is a very substantial overlap between the results reported here and those
of the independent and contemporaneous article [17]. The basic differential inequalities of
Theorems 2.2 and 4.10 appear in both articles. The proofs are in essence the same despite
some differences of presentation. We are grateful to the authors of [17] for explaining the
relationship between the random-parity representation of Sect. 3 and the random-current
representation of [28, Sect. 2.2]. As pointed out in [17], the appendix of [16] contains a
type of switching argument for the mean-field model. A principal difference between that
argument and those of [17, 28] and the current work is that it uses the classical switching
lemma developed in [1], applied to a discretized version of the mean-field system.

2 Classical and Quantum Ising Models

Let L = (V ,E) be a finite, connected graph, which (for simplicity only) we assume to
have neither loops nor multiple edges. An edge of L with endpoints u, v is denoted by uv.
We write u ∼ v if uv ∈ E.

2.1 Quantum Ising Model with Transverse Field

As basis for each copy of C
2 in the Hilbert space H =⊗x∈V C

2, we take the vectors |+v〉 =( 1
0

)
and |−v〉 = ( 0

1

)
. Let D be the set of 2|V | basis vectors of H of the form |σ 〉 =⊗v∈V |±v〉.

There is a natural one–one correspondence between D and the space 	 = {−1,+1}V , and
we shall speak of H as being generated by 	. The trace of the Hermitian matrix A is defined
as

tr(A) =
∑

σ∈	

〈σ |A|σ 〉.

Here, 〈ψ | is the adjoint, or complex transpose, of the vector |ψ〉.
The Hamiltonian of the quantum Ising model with transverse field is given in (1.1). Let

β > 0 be a fixed real number (known as the ‘inverse temperature’), and define the positive
temperature states

νL,β(Q) = 1

ZL(β)
tr(e−βH Q), (2.1)

where ZL(β) = tr(e−βH ) and Q is a suitable matrix. The ground state is defined as the limit
νL of νL,β as β → ∞. If (Ln : n ≥ 1) is an increasing sequence of graphs tending to an
infinite graph L, then we may also make use of the infinite-volume limits

νL,β = lim
n→∞νLn,β, νL = lim

n→∞νLn .

The existence of such limits is discussed in [9].
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2.2 Space–Time Ising Model

A number of authors have developed and utilized the following ‘path integral representation’
of the quantum Ising model, see for example [5, 9, 15, 16, 27, 33] and the recent surveys to
be found in [24, 28]. Let S = Sβ be the circle of circumference β , which we think of as the
interval [0, β] with its two endpoints identified. Let λ, δ, γ be non-negative constants, and
let μλ, μδ , μγ be the probability measures associated with independent Poisson processes
on E ×S, V ×S, and V ×S with respective intensities λ, δ, γ . Elements sampled from these
measures will typically be denoted by B , D, G, and their members will be called bridges,
deaths and ghost-bonds respectively.

Remark 2.1 For simplicity of notation in this article, we shall frequently overlook events
with zero probability.

Thus, for example, we shall assume without more ado that the S coordinates of the points
of B ∪ D ∪ G are distinct. Furthermore, we shall take as sample space for B (respectively,
D, G) the set B (respectively, F ) of finite subsets of E × S (respectively, V × S).

For D ∈ F , write V (D) for the collection of maximal intervals of (V × S) \ D, and
let 	(D) = {−1,+1}V (D). Each σ ∈ 	(D) should be viewed as a spin-configuration on
(V × S) \ D using local spins ±1: for x = (v, t) ∈ (V × S) \ D, write σx = σ(v,t) for the
local state of x under σ , that is, the σ -value of the interval in V (D) containing x. Note that
σx is undefined for x /∈ D, but, since D is almost surely finite, this is no bar to the following
definition.

The space–time Ising measure on the domain

� := L × S = (V × S,E × S)

is defined to be the probability measure on the space

	 =
⋃

D∈F

	(D),

with partition function

Z′ =
∫

F
dμδ(D)

∑

σ∈	(D)

exp

{
λ

∫

E×S

σe de + γ

∫

V ×S

σx dx

}
(2.2)

where σe = σ(u,t)σ(v,t) if e = (uv, t). The two integrals in (2.2) are to be interpreted, respec-
tively, as

∑

e=uv∈E

∫

S

σ(u,t)σ(v,t) dt,
∑

v∈V

∫

S

σ(v,t) dt.

Note that the use of the circle S amounts to a periodic boundary condition in the β direction.
We shall generally suppress reference to β in the following.

Here is a word of motivation for (2.2); see also [12, 27]. Let D ∈ F , and think of V (D)

as the set of vertices of a graph with edges given as follows. We augment V (D) with an
auxiliary vertex, called the ghost-vertex and denoted , to which we assign spin σ = 1.
An edge is placed between  and each v̄ ∈ V (D). For ū, v̄ ∈ V (D), with ū = u × I1 and
v̄ = v × I2 say, we place an edge between ū and v̄ if and only if: (i) uv is an edge of L,
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and (ii) I1 ∩ I2 �= ∅. Under the measure with partition function (2.2), and conditional on D,
a spin-configuration σ ∈ 	(D) on this graph receives an Ising weight

exp

{
∑

ūv̄

Jūv̄σūσv̄ +
∑

v̄

hv̄σv̄

}
, (2.3)

where σv̄ denotes the common value of σ along v̄, and with Jūv̄ = λ|I1 ∩ I2| and hv̄ = γ |v̄|.
Here, |J | denotes the Lebesgue measure of the interval J . This observation will be pursued
further in Sect. 3.2.

We will use angle brackets 〈·〉 for the expectation operator under the measure given
by (2.2). Thus, for example,

〈σA〉 = 1

Z′

∫
dμδ(D)

∑

σ∈	(D)

σA exp

{
λ

∫

E×S

σe de + γ

∫

V ×S

σx dx

}
, (2.4)

where A ⊆ V × S is a finite set, and

σA :=
∏

y∈A

σy. (2.5)

Let 0 be a given point of V ×S. We will be particularly concerned with the magnetization
and susceptibility of the space–time Ising model on � = L × S, given respectively by

M = M�(λ, δ, γ ) := 〈σ0〉, (2.6)

χ = χ�(λ, δ, γ ) := ∂M

∂γ
=
∫

�

〈σ0;σx〉dx, (2.7)

where the truncated two-point function 〈σ0;σx〉 is given by

〈σA;σB〉 := 〈σAσB〉 − 〈σA〉〈σB〉. (2.8)

We will derive a number of differential inequalities for M and χ , of which the following
is the principal one. In writing L = [−n,n]d , we mean that L is the box [−n,n]d of Z

d

with ‘periodic boundary conditions’, which is to say that two vertices u, v are joined by an
edge whenever there exists i ∈ {1,2, . . . , d} such that: u and v differ by exactly 2n in the
ith coordinate, and the other coordinates are equal. (Our results are in fact valid in greater
generality, see the statement before Assumption 4.9.) Subject to this boundary condition,
M and χ do not depend on the choice of origin 0.

Theorem 2.2 Let d ≥ 1 and let L = [−n,n]d . Then

M ≤ γχ + M3 + 2λM2 ∂M

∂λ
− 2δM2 ∂M

∂δ
. (2.9)

A similar inequality was derived in [7] for the classical Ising model, and our method
of proof is closely related to that used there. Other such inequalities have been proved for
percolation in [4] (see also [22]), and for the contact model in [6, 10]. As observed in [4, 7],
the powers of M on the right side of (2.9) determine the bounds of Theorems 1.1(ii) and 1.2
on the critical exponents. The cornerstone of our proof is a random-parity representation of
the space–time Ising model.
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In the ground-state limit as β,n → ∞ and γ > 0, the two quantities M , χ have well-
defined limits denoted M∞ and χ∞. By a re-scaling argument, M∞ depends on the parame-
ters through the ratios λ/δ, γ /δ. Thus we may take as ‘order parameter’ the function

M(ρ,γ ) := M∞(ρ,1, γ ).

More generally, let Mβ(ρ,γ ) = M
β
∞(ρ,1, γ ) where M

β
∞ = limn→∞ Mβ , and define the crit-

ical value ρ
β
c by (1.3).

The analysis of the differential inequalities, following [4, 7], reveals a number of facts
about the behaviour of the model. In particular, we will show the exponential decay of the
correlations 〈σ0σx〉β+ when ρ < ρ

β
c and γ = 0, as asserted in Theorem 1.1, and in addition

certain bounds on two critical exponents of the model. See Sect. 6 for further details.
We shall on occasion write μ(f ) for the expectation of a random variable f under the

probability measure μ. The indicator function of an event H is written either 1H or 1{H }.
The complement of H is written H c.

2.3 Classical/Quantum Relationship

The space–time Ising model is closely related to the quantum Ising model, one manifes-
tation of this being the following. As indicated at the start of this section, a classical spin
configuration σ ∈ 	 = {−1,+1}V may be identified with the basis vector |σ 〉 =⊗v∈V |σv〉
of H. The state νL,β of (2.1) gives rise thereby to a probability measure μ on 	 by

μ(σ) = 〈σ |e−βH |σ 〉
tr(e−βH )

, σ ∈ 	. (2.10)

When γ = 0, it turns out that μ is the law of the vector (σ(v,0) : v ∈ V ) under the space–time
Ising measure of (2.2) (see [9] and the references therein). It therefore makes sense to study
the phase diagram of the quantum Ising model via its representation in the space–time Ising
model. Note, however, that in our analysis it is crucial to work with γ > 0, and to take the
limit γ ↓ 0 later. The role played in the classical model by the external field will in our
analysis be played by the ‘ghost-field’ γ rather than the ‘physical’ transverse field δ.

We draw from [5, 9] in the following summary of the relationship between the phase
transitions of the quantum and space–time Ising models. Let u,v ∈ V , and

τ
β

L (u, v) := tr
(
νL,β(Qu,v)

)
, Qu,v = σ (3)

u σ (3)
v .

It is the case that

τ
β

L (u, v) = 〈σA〉βL (2.11)

where A = {(u,0), (v,0)}, and the role of β is emphasized in the superscript. Let τ∞
L denote

the limit of τ
β

L as β → ∞. For β ∈ (0,∞], let τβ be the limit of τ
β

L as L ↑ Z
d . (The existence

of this limit may depend on the choice of boundary condition on L, and we return to this at
the end of Sect. 6.) By Theorem 1.1,

τβ(u, v) ≤ c′e−c|u−v|, (2.12)

where c′, c depend on ρ, and c > 0 for ρ < ρ
β
c and β ∈ (0,∞]. Here, |u− v| denotes the L1

distance from u to v. The situation when ρ = ρ
β
c is more obscure, but one has that

lim sup
|v|→∞

τβ(u, v) ≤ M
β
+(ρ), (2.13)
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so that τβ(u, v) → 0 as |v| → ∞, whenever M
β
+(ρ) = 0. It is proved at Theorem 7.1 that

ρ∞
c = 2 and M∞+ (2) = 0 when d = 1.

By the FKG inequality, and the uniqueness of infinite clusters in the continuum random-
cluster model (see [9, 25], for example),

τβ(u, v) ≥ M
β
+(ρ−)2 > 0, (2.14)

when ρ > ρ
β
c and β ∈ (0,∞], where f (x−) := limy↑x f (y). The proof is discussed at the

end of Sect. 6.
The quantum mean-field, or Curie–Weiss, model has been studied using large-deviation

techniques in [16], see also [25]. A random-current representation of the quantum Ising
model may be found in [28], and, as explained in Remark 1.3 and [17], this is intimately
related to that discussed and exploited in the next section.

3 The Random-Parity Representation

The Ising model on a discrete graph L is a ‘site model’, in the sense that configurations
comprise spins assigned to the vertices (or ‘sites’) of L. The classical random-current rep-
resentation maps this into a bond-model, in which the sites no longer carry random values,
but instead the edges e (or ‘bonds’) of the graph are replaced by a random number Ne of
parallel edges. The bond e is called even (respectively, odd) if Ne is even (respectively, odd).
The odd bonds may be arranged into paths and cycles. One cannot proceed in the same way
in the above space–time Ising model.

There are two possible alternative approaches. The first uses the fact that, conditional on
the set D of deaths, � may be viewed as a discrete structure with finitely many compo-
nents, to which the random-current representation of [1] may be applied; this is explained
in detail around (3.16) below. Another approach is to forget about ‘bonds’, and instead to
concentrate on the parity configuration associated with a current-configuration, as follows.
The relationship with the random-current representation of [28] is discussed in Remark 1.3.

The circle S may be viewed as a continuous limit of a ring of equally spaced points. If we
apply the random-current representation to the discretized system, but only record whether
a bond is even or odd, the representation has a well-defined limit as a partition of S into even
and odd sub-intervals. In the limiting picture, even and odd intervals carry different weights,
and it is the properties of these weights that render the representation useful. This is the
essence of the main result in this section, Theorem 3.1. We will prove this result without
recourse to discretization.

3.1 Colourings

We first generalize the set-up of Sect. 2. For v ∈ V , let Kv ⊆ S be a finite union of (maximal)
disjoint intervals, say Kv =⋃m(v)

i=1 I v
i . No assumption is made at this stage on whether the

I v
i are open, closed, or half-open. For e = uv ∈ E, let Ke = Ku ∩Kv . With the Kv given, we

define

K :=
⋃

v∈V

v × Kv, F :=
⋃

e∈E

e × Ke, (3.1)

� := (K,F ), (3.2)
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where these sets are considered as unions of real intervals. We shall soon introduce an aux-
iliary ‘ghost-vertex’, denoted , and shall write

K := K ∪ {}. (3.3)

In Sect. 2, we treated only the case when each Kv comprises the single interval S := [0, β].
We continue to use the notation B (respectively, F ) for the set of finite subsets of F (respec-
tively, K). The closure of a Borel subset J of Z × R is written J .

Much of the following analysis is valid with the constants λ, δ, γ replaced by (pos-
sibly non-constant) functions. Specifically, let λ : E × S → R+, δ : V × S → R+, and
γ : V × S → R+ be bounded, measurable functions, where R+ = [0,∞). We retain the
notation λ, δ, γ for the restrictions of these functions to �, given in (3.2), and let μλ, μδ , μγ

be the probability measures associated with independent Poisson processes with respective
intensities λ, δ, γ on the respective subsets of �. For D ∈ F , the set (v ×Kv) \D is a union
of maximal death-free intervals v×J k

v , where k = 1,2, . . . , n and n = n(v,D) is the number
of such intervals. With V (D) the collection of all such intervals, and 	(D) = {−1,+1}V (D)

as before, we may define the space–time Ising measure on the � of (3.2) as that with parti-
tion function

Z′
K =

∫

F
dμδ(D)

∑

σ∈	(D)

exp

{∫
λ(e)σe de +

∫
γ (x)σx dx

}
. (3.4)

As in (2.4), we write 〈σA〉K , abbreviated to 〈σA〉 when the context is obvious, for the mean
of σA under this measure.

It is essential for our method that we work on general domains of the form given in (3.2).
The reason for this is that, in the geometrical analysis of currents, we shall at times remove
from K a random subset called the ‘backbone’, and the ensuing domain has the form of (3.2).
This generalization also allows us to work with a ‘free’ rather than a ‘vertically periodic’
boundary condition. That is, by setting Kv = [0, β) for all v ∈ V , rather than Kv = [0, β],
we effectively remove the restriction that the ‘top’ and ‘bottom’ of each v ×S have the same
spin.

Whenever we wish to emphasize the roles of particular K , λ, δ, γ , we include them as
subscripts. For example, we may write 〈σA〉K or 〈σA〉K,γ or Z′

γ , and so on.
We now define two additional random processes associated with the space–time Ising

measure on �. The first is a random colouring of K , and the second is a random (finite)
weighted graph. These two objects will be the main components of the random-parity rep-
resentation.

Let K be the closure of K . A set of sources is a finite set A ⊆ K such that: each a ∈ A

is the endpoint of at most one maximal sub-interval I v
i of K . (This last condition is for

simplicity later.) Let B ∈ B and G ∈ F . Let S = A ∪ G ∪ V (B), where V (B) is the set of
endpoints of bridges of B , and call members of S switching points. As in Remark 2.1, we
shall assume that A, G and V (B) are disjoint.

We shall define a colouring ψA = ψA(B,G) of K \ S using the two colours (or labels)
‘even’ and ‘odd’. This colouring is constrained to be ‘valid’, where a valid colouring is
defined to be a mapping ψ : K \ S → {even,odd} such that:

(i) the label is constant between two neighbouring switching points, that is, ψ is constant
on any sub-interval of K containing no members of S,

(ii) the label always switches at each switching point, which is to say that, for (u, t) ∈ S,
ψ(u, t−) �= ψ(u, t+), whenever these two values are defined,
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Fig. 1 Three examples of colourings for given B ∈ B, G ∈ F . Points in G are written g. Thick line segments
are ‘odd’ and thin segments ‘even’. In this illustration we have taken Kv = S for all v. Left and middle: two
of the eight possible colourings when the sources are a, c. Right: one of the possible colourings when the
sources are a, b, c

(iii) for any pair v, k such that I v
k �= S, in the limit as we move along v × I v

k towards an
endpoint a of v × I v

k , the colour converges to ‘even’ if a /∈ A, and to ‘odd’ if a ∈ A.

If there exists v ∈ V and 1 ≤ k ≤ m(v) such that v × I v
k contains an odd number of

switching points, then conditions (i)–(iii) cannot be satisfied; in this case we set the colouring
ψA to a default value denoted #.

Suppose that (i)–(iii) can be satisfied, and let

W = W(K) := {v ∈ V : Kv = S}.

If W = ∅ (in which case we speak of a ‘free’ boundary condition), then there exists a unique
valid colouring, denoted ψA. If r = |W | ≥ 1, there are exactly 2r valid colourings, one for
each of the two possible colours assignable to the sites (w,0), w ∈ W ; in this case we let
ψA be chosen uniformly at random from this set, independently of all other choices. (If
(w,0) ∈ S, we work instead with the colour of (w, ε) in the limit as ε ↓ 0.)

Let MB,G be the probability measure (or expectation when appropriate) governing the
randomization in the definition of ψA: MB,G is the uniform (product) measure on the set of
valid colourings, and it is a point mass if and only if W = ∅. See Fig. 1.

Fix the set A of sources. For (almost every) pair B , G, one may construct as above a
(possibly random) colouring ψA. Conversely, it is easily seen that the pair B , G may (almost
surely) be reconstructed from knowledge of the colouring ψA. For given A, we may thus
speak of a configuration as being either a pair B , G, or a colouring ψA. While ψA(B,G) is
a colouring of K \ S only, we shall sometimes refer to it as a colouring of K .

The next step is to assign weights ∂ψ to colourings ψ . The ‘failed’ colouring # is as-
signed weight ∂# = 0. For every valid colouring ψ , let ev(ψ) (respectively, odd(ψ)) denote
the subset of K that is labelled even (respectively, odd), and let

∂ψ := exp
{
2δ(ev(ψ))

}
, (3.5)

where

δ(U) :=
∫

U

δ(x) dx, U ⊆ V × S.

Up to a multiplicative constant depending on δ(K) only, ∂ψ equals the square of the prob-
ability that the odd part of ψ is death-free.
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Fig. 2 Left: The partition E(D). We have: Kv = S for v ∈ V , the lines v × Kv are drawn as solid, the lines
e × Ke as dashed, and elements of D are marked as crosses. The endpoints of the e × J e

k,l
are the points

where the dotted lines meet the dashed lines. Right: The graph G(D). In this illustration, the dotted lines are
the v × Kv , and the solid lines are the edges of G(D)

3.2 Random-Parity Representation

The expectation E(∂ψA) is taken over the sets B , G, and over the randomization that
takes place when W �= ∅, that is, E denotes expectation with respect to the measure
dμλ(B)dμγ (G)dMB,G. The notation has been chosen to harmonize with that used in [7]
in the discrete case: the expectation E(∂ψA) will play the role of the probability P (∂n = A)

of [7]. The main result of this section now follows.

Theorem 3.1 (Random-parity representation) For any finite set A ⊆ K of sources,

〈σA〉 = E(∂ψA)

E(∂ψ∅)
. (3.6)

We introduce a second random object in advance of proving this. Let D ∈ F , the set of
finite subsets of K , and recall that K \ D is a disjoint union of intervals of the form v × J k

v .
For each e = uv ∈ E, and each 1 ≤ k ≤ n(u) and 1 ≤ l ≤ n(v), let

J e
k,l := J u

k ∩ J v
l , (3.7)

and

E(D) = {e × J e
k,l : e ∈ E, 1 ≤ k ≤ n(u), 1 ≤ l ≤ n(v), J e

k,l �= ∅
}
. (3.8)

Up to a finite set of points, E(D) forms a partition of the set F induced by the ‘deaths’ in D.
The pair

G(D) := (V (D),E(D)) (3.9)

may be viewed as a graph, illustrated in Fig. 2. We will use the symbols v̄ and ē for typi-
cal elements of V (D) and E(D), respectively. There are natural weights on the edges and
vertices of G(D): for ē = e × J e

k,l ∈ E(D) and v̄ = v × J v
k ∈ V (D), let

Jē :=
∫

J e
k,l

λ(e, t) dt, hv̄ :=
∫

Jv
k

γ (v, t) dt. (3.10)

Thus the weight of a vertex or edge is its measure, calculated according to λ or γ , respec-
tively. By (3.10),

∑

ē∈E(D)

Jē +
∑

v̄∈V (D)

hv̄ =
∫

F

λ(e) de +
∫

K

γ (x) dx, D ∈ F . (3.11)
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Proof With � = (K,F ) as in (3.2), we consider the partition function Z′ = Z′
K given in

(3.4). For each v̄ ∈ V (D), ē ∈ E(D), the spins σv and σe are constant for x ∈ v̄ and e ∈ ē,
respectively. Denoting their common values by σv̄ and σē respectively, the summation in
(3.4) equals

∑

σ∈	(D)

exp

⎧
⎨

⎩
∑

ē∈E(D)

σē

∫

ē

λ(e) de +
∑

v̄∈V (D)

σv̄

∫

v̄

γ (x) dx

⎫
⎬

⎭

=
∑

σ∈	(D)

exp

⎧
⎨

⎩
∑

ē∈E(D)

Jēσē +
∑

v̄∈V (D)

hv̄σv̄

⎫
⎬

⎭ . (3.12)

The right side of (3.12) is the partition function of the discrete Ising model on the graph
G(D), with pair couplings Jē and external fields hv̄ . We shall apply the random-current
expansion of [7] to this model.

For convenience of exposition, we introduce the extended graph

G̃(D) = (Ṽ (D), Ẽ(D))

:= (V (D) ∪ {},E(D) ∪ {v̄ : v̄ ∈ V (D)}) (3.13)

where  is the ghost-site of (3.3). We call members of E(D) lattice-bonds, and those of
Ẽ(D) \ E(D) ghost-bonds. Let �(D) be the random multigraph with vertex set Ṽ (D) and
with each edge of Ẽ(D) replaced by a random number of parallel edges, these numbers
being independent and having the Poisson distribution, with parameter Jē for lattice-bonds ē,
and parameter hv̄ for ghost-bonds v̄.

Let {∂�(D) = A} denote the event that, for each v̄ ∈ V (D), the total degree of v̄ in �(D)

plus the number of elements of A inside the closure of v̄ (when regarded as an interval) is
even. (There is μδ-probability 0 that A∩D �= ∅, and thus we may overlook this possibility.)
Applying the discrete random-current expansion, and in particular [23, (9.24)], we obtain by
(3.11) that

∑

σ∈	(D)

exp

⎧
⎨

⎩
∑

ē∈E(D)

Jēσē +
∑

v̄∈V (D)

hv̄σv̄

⎫
⎬

⎭= c2|V (D)|PD(∂�(D) = ∅), (3.14)

where PD is the law of the edge-counts, and

c = exp

{∫

F

λ(e) de +
∫

K

γ (x) dx

}
. (3.15)

By the same argument applied to the numerator in (2.4) (adapted to the measure on �,
see the remark after (3.4)),

〈σA〉 = E(2|V (D)|1{∂�(D) = A})
E(2|V (D)|1{∂�(D) = ∅}) , (3.16)

where the expectation is with respect to μδ × PD . The claim of the theorem will follow by
an appropriate manipulation of (3.16).

Here is another way to sample �(D) which allows us to couple it with the random
colouring ψA. Let B ∈ B and D,G ∈ F . The number of points of G lying in the interval
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v̄ = v × J v
k has the Poisson distribution with parameter hv̄ , and similarly the number of

elements of B lying in ē = e × J e
k,l ∈ E(D) has the Poisson distribution with parameter

Jē . Thus, for given D, the multigraph �(B,G,D), obtained by replacing an edge of Ẽ(D)

by parallel edges equal in number to the corresponding number of points from B or G,
respectively, has the same law as �(D). Using the same sets B , G we may form the random
colouring ψA.

The numerator of (3.16) satisfies

E(2|V (D)|1{∂�(D) = A})
=
∫∫

dμλ(B)dμγ (G)

∫
dμδ(D)2|V (D)|1{∂�(B,G,D) = A}

= μδ(2
|V (D)|)

∫∫
dμλ(B)dμγ (G) μ̃(∂�(B,G,D) = A), (3.17)

where μ̃ is the probability measure on F satisfying

dμ̃

dμδ

(D) ∝ 2|V (D)|. (3.18)

Therefore, by (3.16),

〈σA〉 = P̃ (∂�(B,G,D) = A)

P̃ (∂�(B,G,D) = ∅)
, (3.19)

where P̃ denotes the probability under μλ × μγ × μ̃. We claim that

μ̃(∂�(B,G,D) = A) = sMB,G(∂ψA(B,G)), (3.20)

for all B , G, where s is a constant, and the expectation MB,G is over the uniform measure
on the set of valid colourings. Claim (3.6) follows from this, and the remainder of the proof
is to show (3.20). The constants s, sj are permitted in the following to depend only on �

and δ.
Here is a special case. For B ∈ B, G ∈ F ,

μ̃(∂�(B,G,D) = A) = 0 (3.21)

if and only if some interval I v
k contains an odd number of switching points, if and only if

ψA(B,G) = # and ∂ψA(B,G) = 0. Thus (3.20) holds in this case.
Another special case arises when Kv = [0, β) for all v ∈ V , that is, the ‘free bound-

ary’ case. Assume that each Kv contains an even number of switching points. As remarked
earlier, there is a unique valid colouring ψA = ψA(B,G). Moreover, |V (D)| = |D| + |V |,
whence from standard properties of Poisson processes, μ̃ = μ2δ . It may be seen after some
thought (possibly with the aid of a diagram) that, for given B , G, the events {∂�(B,G,D) =
A} and {D ∩ odd(ψA) = ∅} differ by an event of μ2δ-probability 0. Therefore,

μ̃(∂�(B,G,D) = A) = μ2δ(D ∩ odd(ψA) = ∅)

= exp{−2δ(odd(ψA))}
= s1 exp{2δ(ev(ψA))} = s1∂ψA, (3.22)

with s1 = e−2δ(K). In this special case, (3.20) holds.



244 J.E. Björnberg, G.R. Grimmett

For the general case, we first note some properties of μ̃. By the above, we may assume
that B , G are such that μ̃(∂�(B,G,D) = A) > 0, which is to say that each I v

k contains
an even number of switching points. Let W = {v ∈ V : Kv = S} and, for v ∈ V , let Dv =
D ∩ (v × Kv) and d(v) = |Dv|. By (3.18),

dμ̃

dμδ

(D) ∝ 2|V (D)| =
∏

w∈W

21∨d(w)
∏

v∈V \W
2m(v)+d(v)

∝ 2|D| ∏

w∈W

21{d(w)=0},

where a ∨ b = max{a, b}, and we recall the number m(v) of intervals I v
k that constitute Kv .

Therefore,

dμ̃

dμ2δ

(D) ∝
∏

w∈W

21{d(w)=0}. (3.23)

Three facts follow.

(a) The sets Dv , v ∈ V are independent under μ̃.
(b) For v ∈ V \ W , the law of Dv under μ̃ is μ2δ .
(c) For w ∈ W , the law μw of Dw is that of μ2δ skewed by the Radon–Nikodym factor

21{d(w)=0}, which is to say that

μw(Dw ∈ H) = 1

αw

[
2μ2δ(Dw ∈ H, d(w) = 0)

+ μ2δ(Dw ∈ H, d(w) ≥ 1)
]
, (3.24)

for appropriate sets H , where

αw = μ2δ(d(w) = 0) + 1.

Recall the set S = A ∪ G ∪ V (B) of switching points. By (a) above,

μ̃(∂�(B,G,D) = A) = μ̃(∀v, k : |S ∩ J v
k | is even)

=
∏

v∈V

μ̃(∀k : |S ∩ J v
k | is even). (3.25)

We claim that

μ̃(∀k : |S ∩ J v
k | is even) = s2(v)MB,G

(
exp
{
2δ
(
ev(ψA) ∩ (v × Kv)

)})
, (3.26)

where MB,G is as before. Recall that MB,G is a product measure. Once (3.26) is proved,
(3.20) follows by (3.5) and (3.25).

For v ∈ V \ W , the restriction of ψA to v × Kv is determined given B and G, whence by
(b) above, and the remark prior to (3.22),

μ̃(∀k : |S ∩ J v
k | is even) = μ2δ(∀k : |S ∩ J v

k | is even)

= exp
{−2δ

(
odd(ψA) ∩ (v × Kv)

)}
. (3.27)

Equation (3.26) follows with s2(v) = exp{−2δ(v × Kv)}.
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For w ∈ W , by (3.24),

μ̃(∀k : |S ∩ Jw
k | is even)

= 1

αw

[
2μ2δ(Dw = ∅) + μ2δ(Dw �= ∅, ∀k : |S ∩ Jw

k | is even)
]

= 1

αw

[
μ2δ(Dw = ∅) + μ2δ(∀k : |S ∩ Jw

k | is even)
]
.

Let ψ = ψA(B,G) be a valid colouring with ψ(w,0) = even. (If (w,0) ∈ A, we take
ψ(w,0+) = even.) The colouring ψ , obtained from ψ by flipping all colours on w × Kw ,
is valid also. Taking into account the periodic boundary condition,

μ2δ(∀k : |S ∩ Jw
k | is even)

= μ2δ

({Dw ∩ odd(ψ) = ∅} ∪ {Dw ∩ ev(ψ) = ∅})

= μ2δ(Dw ∩ odd(ψ) = ∅) + μ2δ(Dw ∩ ev(ψ) = ∅) − μ2δ(Dw = ∅),

whence

αwμ̃(∀k : |S ∩ Jw
k | is even)

= μ2δ(Dw ∩ odd(ψ) = ∅) + μ2δ(Dw ∩ ev(ψ) = ∅)

= 2MB,G

(
exp
{−2δ

(
odd(ψA) ∩ (w × Kw)

)})
,

since odd(ψA) = odd(ψ) with MB,G-probability 1
2 , and equals ev(ψ) otherwise. This proves

(3.26) with s2(w) = 2 exp{−2δ(w × Kw)}/αw . �

By keeping track of the constants in the above proof, we arrive at the following statement,
which will be useful later.

Lemma 3.2 The partition function Z′ = Z′
K of (3.4) satisfies

Z′ = 2Neλ(F)+γ (K)−δ(K)E(∂ψ∅),

where N =∑v∈V m(v) is the total number of intervals comprising K .

3.3 The Backbone

The concept of the backbone is key to the analysis of [7], and its definition there has a certain
complexity. The corresponding definition is easier in the current setting, because of the fact
that bridges, deaths, and sources have (almost surely) no common point.

We construct a total order on K by: first ordering the vertices of L, and then using the
natural order on [0, β). Let A ⊆ K be a finite set of sources, and let B ∈ B, G ∈ F . Let ψ be
a valid colouring. We will define a sequence of directed odd paths called the backbone and
denoted ξ = ξ(ψ). Suppose A = (a1, a2, . . . , an) in the above ordering. Starting at a1, follow
the odd interval (in ψ ) until you reach an element of S = A∪G∪V (B). If the first such point
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Fig. 3 A valid colouring
configuration ψ with sources
A = {a, b, c, d}, and its backbone
ξ = ζ 1 ◦ ζ 2. Note that, in this
illustration, bridges protruding
from the sides ‘wrap around’,
and that there are no ghost-bonds

thus encountered is the endpoint of a bridge, cross it, and continue along the odd interval;
continue likewise until we first reach a point t1 ∈ A ∪ G, at which point we stop. Note, by
the validity of ψ , that a1 �= t1. The odd path thus traversed is denoted ζ 1; we take ζ 1 to be
closed (when viewed as a subset of Z

d × R). Repeat the same procedure with A replaced
by A \ {a1, t1}, and iterate until no sources remain. The resulting (unordered) set of paths
ξ = (ζ 1, . . . , ζ k) is called the backbone of ψ . The backbone will also be denoted at times as
ξ = ζ 1 ◦ · · · ◦ζ k . We define ξ(#) = ∅. Note that, apart from the backbone, the remaining odd
segments of ψ form disjoint self-avoiding cycles (or ‘eddies’). Unlike the discrete setting
of [7], there is a (a.s.) unique way of specifying the backbone from knowledge of A, B , G

and the valid colouring ψ . See Fig. 3.
The backbone contains all the sources A as endpoints, and the configuration outside ξ

may be any sourceless configuration. Moreover, since ξ is entirely odd, it does not con-
tribute to the weight ∂ψ in (3.5). It follows, using properties of Poisson processes, that the
conditional expectation E(∂ψA | ξ) equals the expected weight of any sourceless colouring
of K \ ξ , which is to say that, with ξ := ξ(ψA),

E(∂ψA | ξ) = EK\ξ (∂ψ∅) =: ZK\ξ (3.28)

cf. (3.4) and (3.6), and recall Remark 2.1. We abbreviate ZK to Z, and recall from
Lemma 3.2 that the ZR differ from the partition functions Z′

R by certain multiplicative con-
stants.

Let � be the set of all possible backbones as A, B , and G vary, regarded as sequences of
directed paths in K ; these paths may, if required, be ordered by their starting points. For a
source-set A ⊆ K and a backbone ν ∈ �, we write A ∼ ν if there exists B ∈ B and G ∈ F
such that MB,G(ξ(ψA) = ν) > 0. We define the weight wA(ν) by

wA(ν) = wA
K(ν) :=

{
ZK\ν

Z
, if A ∼ ν,

0, otherwise.
(3.29)

By (3.28) and Theorem 3.1, with ξ = ξ(ψA),

E(wA(ξ)) = E(E(∂ψA | ξ))

Z
= E(∂ψA)

E(∂ψ∅)
= 〈σA〉. (3.30)

For ν1, ν2 ∈ � with ν1 ∩ ν2 = ∅ (that is, no point lies in paths of both ν1 and ν2), we
write ν1 ◦ ν2 for the element of � comprising the union of ν1 and ν2.
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Let ν = ζ 1 ◦ · · · ◦ ζ k ∈ � where k ≥ 1. If ζ i has starting point ai and endpoint bi , we
write ζ i : ai → bi , and also ν : a1 → b1, . . . , ak → bk . If bi ∈ G, we write ζ i : ai → .
There is a natural way to ‘cut’ ν at points x lying on ζ i , say, where x �= ai, bi : let
ν̄1 = ν̄1(ν, x) = ζ 1 ◦ · · · ◦ ζ i−1 ◦ ζ i≤x and ν̄2 = ν̄2(ν, x) = ζ i≥x ◦ ζ i+1 ◦ · · · ◦ ζ k , where ζ i≤x

(respectively, ζ i≥x) is the closed sub-path of ζ i from ai to x (respectively, x to bi ). We ex-
press this decomposition as ν = ν̄1 ◦ ν̄2 where, this time, each ν̄i may comprise a number of
disjoint paths. The notation ν will be used only in a situation where there has been a cut.

We note two special cases. If A = {a}, then necessarily ξ(ψA) : a → , so

〈σa〉 = E
(
wa(ξ) · 1{ξ : a → }). (3.31)

If A = {a, b} where a < b in the ordering of K , then

〈σaσb〉 = E
(
wab(ξ) · 1{ξ : a → b})+ E

(
wab(ξ) · 1{ξ : a → , b → }). (3.32)

The last term equals 0 when γ ≡ 0.
Finally, here is a lemma for computing the weight of ν in terms of its constituent parts.

The claim of the lemma is, as usual, valid only ‘almost surely’.

Lemma 3.3
(a) Let ν1, ν2 ∈ � be disjoint, and ν = ν1 ◦ ν2, A ∼ ν. Writing Ai = A ∩ νi , we have that

wA(ν) = wA1
(ν1)wA2

K\ν1(ν
2). (3.33)

(b) Let ν = ν1 ◦ ν2 be a cut of the backbone ν at the point x, and A ∼ ν. Then

wA(ν) = wB1
(ν1)wB2

K\ν1(ν
2), (3.34)

where Bi = Ai ∪ {x}.

Proof By (3.29), the first claim is equivalent to

ZK\ν
Z

1{A ∼ ν} = ZK\ν1

Z
1{A1 ∼ ν1}ZK\(ν1∪ν2)

ZK\ν1
1{A2 ∼ ν2}. (3.35)

The right side vanishes if and only if the left side vanishes. When both sides are non-zero,
their equality follows from the fact that ZK\ν = ZK\(ν1∪ν2). The second claim follows simi-
larly, on adding x to the set of sources. �

4 The Switching Lemma

We state and prove next the principal tool in the random-parity representation, namely the
so-called ‘switching lemma’. In brief, this allows us to take two independent colourings,
with different sources, and to ‘switch’ the sources from one to the other in a measure-
preserving way. In so doing, the backbone will generally change. In order to preserve the
measure, the connectivities inherent in the backbone must be retained. We begin by defining
two notions of connectivity in colourings. We work throughout this section in the general
set-up of Sect. 3.1.
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Fig. 4 Connectivity in pairs of colourings. Left: ψac
1 . Middle: ψ

∅

2 . Right: the triple ψac
1 ,ψ

∅

2 ,�. Crosses

are elements of � and grey lines are where either ψac
1 or ψ

∅

2 is odd. In (ψac
1 ,ψ

∅

2 ,�) the following con-
nectivities hold: a � b, a ↔ c, a ↔ d , b � c, b � d , c ↔ d . The dotted line marks π , one of the open paths
from a to c

4.1 Connectivity and Switching

Let B ∈ B, G ∈ F , let A ⊆ K be a finite set of sources, and write ψA = ψA(B,G) for the
colouring given in the last section. In what follows we think of the ghost-bonds as bridges
to the ghost-site .

Let x, y ∈ K := K ∪ {}. A path from x to y in the configuration (B,G) is a self-
avoiding path with endpoints x, y, traversing intervals of K , and possibly bridges in B

and/or ghost-bonds joining G to . Similarly, a cycle is a self-avoiding cycle in the above
graph. A route is a path or a cycle. A route containing no ghost-bonds is called a lattice-
route. A route is called odd (in the colouring ψA) if ψA, when restricted to the route, takes
only the value ‘odd’. The failed colouring ψA = # is deemed to contain no odd routes.

Let B1,B2 ∈ B, G1,G2 ∈ F , and let ψA
1 = ψA

1 (B1,G1) and ψB
2 = ψB

2 (B2,G2) be the
associated colourings. Let � be an auxiliary Poisson process on K , with intensity function
4δ(·), that is independent of all other random variables so far. We call points of � cuts.
A route of (B1 ∪ B2,G1 ∪ G2) is said to be open in the triple (ψA

1 ,ψB
2 ,�) if it includes no

sub-interval of ev(ψA
1 ) ∩ ev(ψB

2 ) containing one or more elements of �. In other words, the
cuts break paths, but only when they belong to intervals labelled ‘even’ in both colourings.
See Fig. 4. In particular, if there is an odd path π from x to y in ψA

1 , then π constitutes an
open path in (ψA

1 ,ψB
2 ,�) irrespective of ψB

2 and �. We let

{x ↔ y in ψA
1 ,ψB

2 ,�} (4.1)

be the event that there exists an open path from x to y in (ψA
1 ,ψB

2 ,�). We may abbreviate
this to {x ↔ y} when there is no ambiguity.

There is an analogy between open paths in the above construction and the notion of
connectivity in the random-current representation of the discrete Ising model. Points labelled
‘odd’ or ‘even’ above may be considered as collections of infinitesimal parallel edges, being
odd or even in number, respectively. If a point is ‘even’, the corresponding number of edges
may be 2,4,6, . . . or it may be 0; in the ‘union’ of ψA

1 and ψB
2 , connectivity is broken at a

point if and only if both the corresponding numbers equal 0. It turns out that the correct law
for the set of such points is that of �.

Here is some notation. For any finite sequence (a, b, c, . . . ) of elements in K , the string
abc . . . will denote the subset of elements that appear an odd number of times in the se-
quence. If A ⊆ K is a finite source-set with odd cardinality, then for any pair (B,G) for
which there exists a valid colouring ψA(B,G), the number of ghost-bonds must be odd.
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Thinking of these as bridges to ,  may thus be viewed as an element of A, and we make
the following remark.

Remark 4.1 For a source-set A ⊆ K with |A| odd, we shall use the expressions ψA and
ψA∪{} interchangeably.

We call a function F , acting on (ψA
1 ,ψB

2 ,�), a connectivity function if it depends only
on the connectivity properties using open paths of (ψA

1 ,ψB
2 ,�), that is, the value of F

depends only on the set {(x, y) ∈ (K)2 : x ↔ y}. In the following, E denotes expectation
with respect to dμλ dμγ dMB,G dP where P is the law of �.

Theorem 4.2 (Switching lemma) Let F be a connectivity function and A,B ⊆ K finite
source-sets. For x, y ∈ K ∪ {} such that A � xy and B � xy are source-sets,

E
(
∂ψA

1 ∂ψB
2 · F(ψA

1 ,ψB
2 ,�) · 1{x ↔ y in ψA

1 ,ψB
2 ,�})

= E
(
∂ψ

A�xy

1 ∂ψ
B�xy

2 · F(ψ
A�xy

1 ,ψ
B�xy

2 ,�)

× 1{x ↔ y in ψ
A�xy

1 ,ψ
B�xy

2 ,�}
)
. (4.2)

In particular,

E(∂ψ
xy

1 ∂ψB
2 ) = E

(
∂ψ

∅

1 ∂ψ
B�xy

2 · 1{x ↔ y in ψ
∅

1 ,ψ
B�xy

2 ,�}). (4.3)

Proof Equation (4.3) follows from (4.2) with A = {x, y} and F ≡ 1, and so it suffices to
prove (4.2). This is trivial if x = y, and we assume henceforth that x �= y. Recall that W =
{v ∈ V : Kv = S} and |W | = r .

We prove (4.2) first for the special case when F ≡ 1, that is,

E
(
∂ψA

1 ∂ψB
2 · 1{x ↔ y in ψA

1 ,ψB
2 ,�})

= E
(
∂ψ

A�xy

1 ∂ψ
B�xy

2 · 1{x ↔ y in ψ
A�xy

1 ,ψ
B�xy

2 ,�}), (4.4)

and this will follow by conditioning on the pair Q = (B1 ∪ B2,G1 ∪ G2).
Let Q ∈ B × F be given. Conditional on Q, the law of (ψA

1 ,ψB
2 ) is given as follows. First,

we allocate each bridge and each ghost-bond to either ψA
1 or ψB

2 with equal probability
(independently of one another). If W �= ∅, then we must also allocate (uniform) random
colours to the points (w,0), w ∈ W , for each of ψA

1 , ψB
2 . If (w,0) is itself a source, we

work with (w,0+). (Recall that the pair (B ′,G′) may be reconstructed from knowledge of
a valid colouring ψA′

(B ′,G′).) There are 2|Q|+2r possible outcomes of the above choices,
and each is equally likely.

The process � is independent of all random variables used above. Therefore, the condi-
tional expectation, given Q, of the random variable on the left side of (4.4) equals

1

2|Q|+2r

∑

QA,B

∂Q1∂Q2 P (x ↔ y in Q1,Q2,�), (4.5)

where the sum is over the set QA,B = QA,B(Q) of all possible pairs (Q1,Q2) of values of
(ψA

1 ,ψB
2 ). The measure P is that of �.
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Fig. 5 Switched configurations.
Taking Qac

1 , Q
∅

2 and π to be

ψac
1 , ψ

∅

2 and π of Fig. 4,
respectively, this figure illustrates
the ‘switched’ configurations R

∅

1
and Rac

2 (left and right,
respectively)

We shall define an invertible (and therefore measure-preserving) map from QA,B to
QA�xy,B�xy . Let π be a path of Q with endpoints x and y (if such a path π exists), and let
fπ : QA,B → QA�xy,B�xy be given as follows. Let (Q1,Q2) ∈ QA,B , say Q1 = QA

1 (B1,G1)

and Q2 = QB
2 (B2,G2) where Q = (B1 ∪ B2,G1 ∪ G2). For i = 1,2, let B ′

i (respectively,
G′

i ) be the set of bridges (respectively, ghost-bonds) in Q lying in exactly one of Bi , π (re-
spectively, Gi , π ). Otherwise expressed, (B ′

i ,G
′
i ) is obtained from (Bi,Gi) by adding the

bridges/ghost-bonds of π ‘modulo 2’. Note that (B ′
1 ∪ B ′

2,G
′
1 ∪ G′

2) = Q.
If W = ∅, we let R1 = R

A�xy

1 (respectively, R
B�xy

2 ) be the unique valid colouring of
(B ′

1,G
′
1) with sources A � xy (respectively, (B ′

2,G
′
2) with sources B � xy), so R1 =

ψA�xy(B ′
1,G

′
1), and similarly for R2. When W �= ∅ and i = 1,2, we choose the colours

of the (w,0), w ∈ W , (or (w,0+) if (w,0) is a source) in Ri in such a way that Ri ≡ Qi on
K \ π .

It is easily seen that the map fπ : (Q1,Q2) �→ (R1,R2) is invertible, indeed its inverse is
given by the same mechanism. See Fig. 5.

By (3.5),

∂Q1∂Q2 = exp
{
2δ(ev(Q1)) + 2δ(ev(Q2))

}
. (4.6)

Now,

δ(ev(Qi)) = δ(ev(Qi) ∩ π) + δ(ev(Qi) \ π)

= δ(ev(Qi) ∩ π) + δ(ev(Ri) \ π), (4.7)

and

δ(ev(Q1) ∩ π) + δ(ev(Q2) ∩ π) − 2δ
(
ev(Q1) ∩ ev(Q2) ∩ π

)

= δ
(
ev(Q1) ∩ odd(Q2) ∩ π

)+ δ
(
odd(Q1) ∩ ev(Q2) ∩ π

)

= δ
(
odd(R1) ∩ ev(R2) ∩ π

)+ δ
(
ev(R1) ∩ odd(R2) ∩ π

)

= δ(ev(R1) ∩ π) + δ(ev(R2) ∩ π) − 2δ
(
ev(R1) ∩ ev(R2) ∩ π

)
,

whence, by (4.6)–(4.7),

∂Q1∂Q2 = ∂R1∂R2 exp
{−4δ

(
ev(R1) ∩ ev(R2) ∩ π

)}

× exp
{
4δ
(
ev(Q1) ∩ ev(Q2) ∩ π

)}
. (4.8)

The next step is to choose a suitable path π . Consider the final term in (4.5), namely

P (x ↔ y in Q1,Q2,�). (4.9)
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There are finitely many paths in Q from x to y, let these paths be π1,π2, . . . , πn. Let Ok =
Ok(Q1,Q2,�) be the event that πk is the earliest such path that is open in (Q1,Q2,�).
Then

P (x ↔ y in Q1,Q2,�)

=
n∑

k=1

P (Ok)

=
n∑

k=1

P
(
� ∩ [ev(Q1) ∩ ev(Q2) ∩ πk] = ∅

)
P (Õk)

=
n∑

k=1

exp
{−4δ

(
ev(Q1) ∩ ev(Q2) ∩ πk

)}
P (Õk), (4.10)

where Õk = Õk(Q1,Q2,�) is the event (that is, subset of F ) that each of π1, . . . , πk−1 is
rendered non-open in (Q1,Q2,�) through the presence of elements of � lying in K \ πk .
In the second line of (4.10), we have used the independence of � ∩ πk and � ∩ (K \ πk).

Let (Rk
1,R

k
2) = fπk

(Q1,Q2). Since Rk
i ≡ Qi on K \ πk , we have that Õk(Q1,Q2,�) =

Õk(R
k
1,R

k
2,�). By (4.8) and (4.10), the summand in (4.5) equals

n∑

k=1

∂Q1∂Q2 exp
{−4δ

(
ev(Q1) ∩ ev(Q2) ∩ πk

)}
P (Õk)

=
n∑

k=1

∂Rk
1∂Rk

2 exp
{−4δ

(
ev(Rk

1) ∩ ev(Rk
2) ∩ πk

)}
P (Õk)

=
n∑

k=1

∂Rk
1∂Rk

2 P (Ok(R
k
1,R

k
2,�)).

Summing the above over QA,B , and remembering that each fπk
is a bijection between

QA,B and QA�xy,B�xy , (4.5) becomes

1

2|Q|+2r

n∑

k=1

∑

(R1,R2)∈QA�xy,B�xy

∂R1∂R2 P (Ok(R1,R2,�))

= 1

2|Q|+2r

∑

QA�xy,B�xy

∂R1∂R2 P (x ↔ y in R1,R2,�).

By the argument leading to (4.5), this equals the right side of (4.4), and the claim is proved
when F ≡ 1.

Consider now the case of general connectivity functions F in (4.2). In (4.5), the factor
P (x ↔ y in Q1,Q2,�) is replaced by

P
(
F(Q1,Q2,�) · 1{x ↔ y in Q1,Q2,�}),

where P denotes expectation with respect to �. In the calculation (4.10), we use the fact
that

P (F · 1Ok
) = P (F | Ok)P (Ok)
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and we deal with the factor P (Ok) as before. The result follows on noting that, for each k,

P
(
F(Q1,Q2,�)

∣∣Ok(Q1,Q2,�)
)= P

(
F(Rk

1,R
k
2,�)

∣∣Ok(R
k
1,R

k
2,�)

)
.

This holds because: (i) the configurations (Q1,Q2,�) and (Rk
1,R

k
2,�) are identical off πk ,

and (ii) in each, all points along πk are connected. Thus the connectivities are identical in
the two configurations. �

4.2 Applications of Switching

In this section are presented a number of inequalities and identities proved using the random-
parity representation and the switching lemma. With some exceptions (most notably (4.40))
the proofs are adaptations of the proofs for the discrete Ising model that may be found in
[7, 23].

For functions f,g : K → R, we write f ≤ g if f (x) ≤ g(x) for all x ∈ K .

Lemma 4.3 (GKS inequality) Let A,B ⊆ K be finite sets of sources, not necessarily dis-
joint. Then

〈σA〉 ≥ 0, (4.11)

and

〈σA;σB〉 := 〈σAσB〉 − 〈σA〉〈σB〉 ≥ 0. (4.12)

Lemma 4.4 Let A ⊆ K be a finite set of sources. Then 〈σA〉 is increasing in λ and γ and
decreasing in δ. Moreover, if R ⊆ K is measurable,

〈σA〉K\R ≤ 〈σA〉K. (4.13)

We interpret 〈σA〉K\R as 0 when A is not a source-set for K \ R.
Lemmas 4.3 and 4.4 may be shown using conventional inequalities of spin-correlation-

type. They may be proved more easily using the FKG-inequality for the associated random-
cluster model (using, for example, the methods of [26]). We omit these proofs, full details
of which may be found in [12].

For R ⊆ K a finite union of intervals, let

R̃ := {(uv, t) ∈ F : either (u, t) ∈ R or (v, t) ∈ R or both}.
Recall that W = W(K) = {v ∈ V : Kv = S}, and N = N(K) is the total number of (maxi-
mal) intervals constituting K .

Lemma 4.5 Let R ⊆ K be a finite union of intervals, and let ν ∈ � be such that ν ∩R = ∅.
If A ⊆ K \ R is a finite source-set for both K and K \ R, and A ∼ ν, then

wA(ν) ≤ 2r(ν)−r ′(ν)wA
K\R(ν), (4.14)

where

r(ν) = r(ν,K) := |{w ∈ W : ν ∩ (w × Kw) �= ∅}|,
r ′(ν) = r(ν,K \ R).
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Proof By (3.29) and Lemma 3.2,

wA(ν) = ZK\ν
ZK

= 2N(K)−N(K\ν)eλ(̃ν)+γ (ν)−δ(ν)
Z′

K\ν
Z′

K

. (4.15)

We claim that

Z′
K\ν

Z′
K

≤ Z′
K\(R∪ν)

Z′
K\R

, (4.16)

and the proof of this follows.
Recall the formula (3.4) for Z′

K in terms of an integral over the Poisson process D. The
set D is the union of independent Poisson processes D′ and D′′, restricted respectively to
K \ ν and ν. We write P ′ (respectively, P ′′) for the probability measure (and, on occasion,
expectation operator) governing D′ (respectively, D′′). Let 	(D′) denote the set of spin
configurations on K \ ν that are permitted by D′. By (3.4),

Z′
K = P ′

⎛

⎝
∑

σ ′∈	(D′)
Z′

ν(σ
′) exp

{∫

F \̃ν
λ(e)σ ′

e de +
∫

K\ν
γ (x)σ ′

x dx

}⎞

⎠ , (4.17)

where

Z′
ν(σ

′) = P ′′

⎛

⎝
∑

σ ′′∈	̃(D′′)
exp

{∫

ν̃

λ(e)σe de +
∫

ν

γ (x)σx dx

}
· 1C(σ ′)

⎞

⎠

is the partition function on ν with boundary condition σ ′, and where σ , 	̃(D′′), and C =
C(D′′) are given as follows.

The set D′′ divides ν, in the usual way, into a collection Vν(D
′′) of intervals. From the

set of endpoints of such intervals, we distinguish the subset E that: (i) lie in K , and (ii)
are endpoints of some interval of K \ ν. For x ∈ E , let σ ′

x = limy→x σ ′
y , where the limit is

taken over y ∈ K \ ν. Let Ṽν(D
′′) be the subset of Vν(D

′′) containing those intervals with
no endpoint in E , and let 	̃(D′′) = {−1,+1}Ṽν (D′′).

Let σ ′ ∈ 	(D′), and let I be the set of maximal sub-intervals I of ν having both end-
points in E , and such that I ∩ D′′ = ∅. Let C = C(D′′) be the set of σ ′ ∈ 	(D′) such that,
for all I ∈ I , the endpoints of I have equal spins under σ ′. Note that

1C(σ ′) =
∏

I∈I

1
2 (σ ′

x(I)σ
′
y(I) + 1), (4.18)

where x(I), y(I) denote the endpoints of I .
Let σ ′′ ∈ 	̃(D′′). The conjunction σ of σ ′ and σ ′′ is defined except on sub-intervals of ν

lying in Vν(D
′′) \ Ṽν(D

′′). On any such sub-interval with exactly one endpoint x in E , we
set σ ≡ σ ′

x . On the event C, an interval of ν with both endpoints x(I), y(I) in E receives the
spin σ ≡ σ ′

x(I) = σ ′
y(I). Thus, σ ∈ 	(D′ ∪ D′′) is well defined for σ ′ ∈ C.
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By (4.17),

Z′
K

Z′
K\ν

= 〈Z′
ν(σ

′)〉K\ν .

Taking the expectation 〈·〉K\ν inside the integral, the last expression becomes

P ′′

⎛

⎝
∑

σ ′′∈	̃(D′′)

〈
exp

{∫

ν̃

λ(e)σe de

}
exp

{∫

ν

γ (x)σx dx

}
· 1C(σ ′)

〉

K\ν

⎞

⎠ .

The inner expectation may be expressed as a sum over k, l ≥ 0 (with non-negative coeffi-
cients) of iterated integrals of the form

1

k!
1

l!
∫∫

ν̃k×νl

λ(e)γ (x)〈σe1 · · ·σek
σx1 · · ·σxl

· 1C(σ ′)〉K\ν dedx, (4.19)

where we have written e = (e1, . . . , ek), and λ(e) for λ(e1) · · ·λ(ek) (and similarly for x and
γ (x)). We may write

〈σe1 · · ·σek
σx1 · · ·σxl

· 1C〉K\ν = 〈σ ′
Sσ

′′
T · 1C〉K\ν = σ ′′

T 〈σ ′
S · 1C〉K\ν,

for sets S ⊆ K \ ν, T ⊆ ν determined by e1, . . . , ek, x1, . . . , xl and D′′ only. We now bring
the sum over σ ′′ inside the integral of (4.19). For T �= ∅,

∑

σ ′′∈	̃(D′′)
σ ′′

T 〈σ ′
S · 1C〉K\ν = 0,

so any non-zero term is of the form

〈σ ′
S · 1C〉K\ν . (4.20)

By (4.18), (4.20) may be expressed in the form

s∑

i=1

2−ai 〈σ ′
Si

〉K\ν (4.21)

for appropriate sets Si and integers ai . By Lemma 4.4,

〈σ ′
Si

〉K\ν ≥ 〈σ ′
Si

〉K\(R∪ν).

On working backwards, we obtain (4.16).
By (4.15)–(4.16),

wA(ν) ≤ 2UwA
K\R(ν),

where

U = [N(K) − N(K \ ν)
]− [N(K \ R) − N(K \ (R ∪ ν))

]

= r(ν) − r ′(ν)

as required. �
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For distinct x, y, z ∈ K , let

〈σx;σy;σz〉 :=〈σxyz〉 − 〈σx〉〈σyz〉
− 〈σy〉〈σxz〉 − 〈σz〉〈σxy〉 + 2〈σx〉〈σy〉〈σz〉.

Lemma 4.6 (GHS inequality) For distinct x, y, z ∈ K ,

〈σx;σy;σz〉 ≤ 0. (4.22)

Moreover, 〈σx〉 is concave in γ in the sense that, for bounded, measurable functions γ1, γ2 :
K → R+ satisfying γ1 ≤ γ2, and θ ∈ [0,1],

θ〈σx〉γ1 + (1 − θ)〈σx〉γ2 ≤ 〈σx〉θγ1+(1−θ)γ2 . (4.23)

Proof The proof of this follows very closely the corresponding proof for the classical Ising
model [21]. We include it here because it allows us to develop the technique of ‘conditioning
on clusters’, which will be useful later.

We prove (4.22) via the following more general result. Let (Bi,Gi), i = 1,2,3, be inde-
pendent sets of bridges/ghost-bonds, and write ψi , i = 1,2,3, for corresponding colourings
(with sources to be specified through their superscripts). We claim that, for any four points
w,x, y, z ∈ K ,

E
(
∂ψ

∅

1 ∂ψ
∅

2 ∂ψ
wxyz

3

)− E
(
∂ψ

∅

1 ∂ψwz
2 ∂ψ

xy

3

)

≤ E(∂ψ
∅

1 ∂ψwx
2 ∂ψ

yz

3 ) + E(∂ψ
∅

1 ∂ψ
wy

2 ∂ψxz
3 ) − 2E(∂ψwx

1 ∂ψ
wy

2 ∂ψwz
3 ). (4.24)

Inequality (4.22) follows by Theorem 3.1 on letting w = .
The left side of (4.24) is

E(∂ψ
∅

1 )
[
E(∂ψ

∅

2 ∂ψ
wxyz

3 ) − E(∂ψwz
2 ∂ψ

xy

3 )
]

= Z E
(
∂ψ

∅

2 ∂ψ
wxyz

3 · 1{w � z}),
by the Switching Lemma 4.2. When ∂ψ

wxyz

3 is non-zero, parity constraints imply that at
least one of {w ↔ x} ∩ {y ↔ z} and {w ↔ y} ∩ {x ↔ z} occurs, but that, in the presence of
the indicator function they cannot both occur. Therefore,

E(∂ψ
∅

2 ∂ψ
wxyz

3 · 1{w � z})
= E

(
∂ψ

∅

2 ∂ψ
wxyz

3 · 1{w � z} · 1{w ↔ x})

+ E
(
∂ψ

∅

2 ∂ψ
wxyz

3 · 1{w � z} · 1{w ↔ y}). (4.25)

Consider the first term. By the switching lemma,

E
(
∂ψ

∅

2 ∂ψ
wxyz

3 · 1{w � z} · 1{w ↔ x})= E
(
∂ψwx

2 ∂ψ
yz

3 · 1{w � z}). (4.26)

We next ‘condition on a cluster’. Let Cz = Cz(ψ
wx
2 ,ψ

yz

3 ,�) be the set of all points of K

that are connected by open paths to z. Conditional on Cz, define new independent colourings
μ

∅

2 , μ
yz

3 on the domain M = Cz. Similarly, let νwx
2 , ν

∅

3 be independent colourings on the
domain N = K \ Cz, that are also independent of the μi . It is not hard to see that, if w � z

in (ψwx
2 ,ψ

yz

3 ,�), then, conditional on Cz, the law of ψwx
2 equals that of the superposition
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of μ
∅

2 and νwx
2 ; similarly the conditional law of ψ

yz

3 is the same as that of the superposition
of μ

yz

3 and ν
∅

3 . Therefore, almost surely on the event {w � z},
E(∂ψwx

2 ∂ψ
yz

3 | Cz) = E′(∂μ
∅

2 )E′(∂νwx
2 )E′(∂μ

yz

3 )E′(∂ν
∅

3 )

= 〈σwx〉NE′(∂μ
∅

2 )E′(∂ν
∅

2 )E′(∂μ
yz

3 )E′(∂ν
∅

3 )

≤ 〈σwx〉KE(∂ψ
∅

2 ∂ψ
yz

3 | Cz), (4.27)

where E′ denotes expectation conditional on Cz, and we have used Lemma 4.4. Returning
to (4.25)–(4.26),

E
(
∂ψ

∅

2 ∂ψ
wxyz

3 · 1{w � z} · 1{w ↔ x})

≤ 〈σwx〉E(∂ψ
∅

2 ∂ψ
yz

3 · 1{w � z}).
The other term in (4.25) satisfies the same inequality with x and y interchanged. Inequality
(4.24) follows on applying the switching lemma to the right sides of these two last inequal-
ities, and adding them.

The concavity of 〈σx〉 follows from the fact that, if

T =
n∑

k=1

ak1Ak
(4.28)

is a step function on K with ak ≥ 0 for all k, and γ (·) = γ1(·) + αT (·), then

∂2

∂α2
〈σx〉 =

n∑

k,l=1

akal

∫∫

Ak×Al

dy dz 〈σx;σy;σz〉 ≤ 0. (4.29)

Thus, the claim holds whenever γ2 − γ1 is a step function. The general claim follows by ap-
proximating γ2 −γ1 by step functions, and applying the dominated convergence theorem. �

For the next lemma we assume for simplicity that γ ≡ 0 (although similar results can
easily be proved for γ �≡ 0). We let δ̄ ∈ R be an upper bound for δ, thus δ(x) ≤ δ̄ < ∞ for
all x ∈ K . Let a, b ∈ K be two distinct points. A closed set T ⊆ K is said to separate a from
b if every lattice path from a to b (whatever the set of bridges) intersects T . Moreover, if
ε > 0 and T separates a from b, we say that T is an ε-fat separating set if every point in T

lies in a closed sub-interval of T of length at least ε.

Lemma 4.7 (Simon inequality) Let γ ≡ 0. If ε > 0 and T is an ε-fat separating set for
a, b ∈ K ,

〈σaσb〉 ≤ 1

ε
exp(8εδ̄)

∫

T

〈σaσx〉〈σxσb〉dx. (4.30)

Proof By Theorems 3.1 and 4.2,

〈σaσx〉〈σxσb〉 = 1

Z2
E(∂ψ

∅

1 ∂ψab
2 · 1{a ↔ x}), (4.31)

and, by Fubini’s theorem,
∫

T

〈σaσx〉〈σxσb〉 dx = 1

Z2
E(∂ψ

∅

1 ∂ψab
2 · |T̂ |), (4.32)
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Fig. 6 The Simon inequality.
The separating set T is drawn
with solid black lines, and the
backbone ξ with a grey line

where T̂ = {x ∈ T : a ↔ x} and | · | denotes Lebesgue measure. Since γ ≡ 0, the backbone
ξ = ξ(ψab

2 ) consists of a single (lattice-) path from a to b passing through T . Let U denote
the set of points in K that are separated from b by T , and let X be the point at which ξ exits
U for the first time. Since T is assumed closed, X ∈ T . See Fig. 6.

For x ∈ T , let Ax be the event that there is no element of � within the interval of length
2ε centred at x. Thus, P (Ax) ≥ exp(−8εδ̄). On the event AX , we have that |T̂ | ≥ ε, whence

E(∂ψ
∅

1 ∂ψab
2 · |T̂ |) ≥ E(∂ψ

∅

1 ∂ψab
2 · |T̂ | · 1{AX})

≥ εE(∂ψ
∅

1 ∂ψab
2 · 1{AX}). (4.33)

Conditional on X, the event AX is independent of ψ
∅

1 and ψab
2 , so that

E(∂ψ
∅

1 ∂ψab
2 · |T̂ |) ≥ ε exp(−8εδ̄)E(∂ψ

∅

1 ∂ψab
2 ), (4.34)

and the proof is complete. �

Just as for the classical Ising model, only a small amount of extra work is required to
obtain the following improvement of Lemma 4.7.

Lemma 4.8 (Lieb inequality) Under the assumptions of Lemma 4.7,

〈σaσb〉 ≤ 1

ε
exp(8εδ̄)

∫

T

〈σaσx〉U 〈σxσb〉 dx, (4.35)

where 〈·〉U denotes expectation with respect to the measure restricted to U .

Proof Let x ∈ T , let ψ
ax

1 denote a colouring on the restricted region U , and let ψxb
2 denote

a colouring on the full region K as before. We claim that

E(∂ψ
ax

1 ∂ψxb
2 ) = E

(
∂ψ

∅

1 ∂ψab
2 · 1{a ↔ x in U}). (4.36)

The use of the letter E is an abuse of notation, since the ψ are colourings of U only.
Equation (4.36) may be established using a slight variation in the proof of the switching

lemma. We follow the proof of that lemma, first conditioning on the set Q of all bridges and
ghost-bonds in the two colourings taken together, and then allocating them to the colourings
Q1 and Q2, uniformly at random. We then order the paths π of Q from a to x, and add the
earliest open path to both Q1 and Q2 ‘modulo 2’. There are two differences here: firstly,
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any element of Q that is not contained in U will be allocated to Q2, and secondly, we only
consider paths π that lie inside U . Subject to these two changes, we follow the argument of
the switching lemma to arrive at (4.36).

Integrating (4.36) over x ∈ T ,

∫

T

〈σaσx〉U 〈σxσb〉 dx = 1

ZUZ
E(∂ψ

∅

1 ∂ψab
2 · |T̂ |), (4.37)

where this time T̂ = {x ∈ T : a ↔ x in U}. The proof is completed as in (4.33)–(4.34). �

For the next lemma we specialize to the situation that is the main focus of this arti-
cle, namely the following. Similar results are valid for other lattices and for summable
translation-invariant interactions.

Assumption 4.9

– The graph L = [−n,n]d ⊆ Z
d where d ≥ 1, with periodic boundary condition.

– The parameters λ, δ, γ are non-negative constants.
– The set Kv = S for every v ∈ V .

Under the periodic boundary condition, two vertices of L are joined by an edge whenever
there exists i ∈ {1,2, . . . , d} such that their i-coordinates differ by exactly 2n, and all other
coordinates are equal.

Under Assumption 4.9, the process is invariant under automorphisms of L and,
furthermore, the quantity 〈σx〉 does not depend on the choice of x. Let 0 denote some
fixed but arbitrary point of K , and let M = M(λ, δ, γ ) = 〈σ0〉 denote the common value of
the 〈σx〉.

For x, y ∈ K , we write x ∼ y if x = (u, t) and y = (v, t) for some t ≥ 0 and u,v adjacent
in L. We write {x z↔ y} for the complement of the event that there exists an open path from
x to y not containing z. Thus, x

z↔ y if: either x � y, or x ↔ y and every open path from x

to y passes through z.

Theorem 4.10 Under Assumption 4.9, the following hold.

∂M

∂γ
= 1

Z2

∫

K

dx E
(
∂ψ0x

1 ∂ψ
∅

2 · 1{0 � })≤ M

γ
, (4.38)

∂M

∂λ
= 1

2Z2

∫

K

dx
∑

y∼x

E
(
∂ψ

0xy

1 ∂ψ
∅

2 · 1{0 � })≤ 2dM
∂M

∂γ
, (4.39)

−∂M

∂δ
= 2

Z2

∫

K

dx E
(
∂ψ0

1 ∂ψ
∅

2 · 1{0 x↔ })≤ 2M

1 − M2

∂M

∂γ
. (4.40)

Proof With the exception of (4.40), the proofs mimic those of [7] for the classical Ising
model, and are therefore omitted. See [12].

Here is the proof of (4.40). Let | · | denote Lebesgue measure as usual. By differentiating

M = E(∂ψ0)

E(∂ψ∅)
= E(exp(2δ|ev(ψ0)|))

E(exp(2δ|ev(ψ∅)|)) (4.41)
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with respect to δ, we obtain that

∂M

∂δ
= 2

Z2
E
(
∂ψ0

1 ∂ψ
∅

2 · [|ev(ψ0
1 )| − |ev(ψ

∅

2 )|])

= 2

Z2

∫
dx E

(
∂ψ0

1 ∂ψ
∅

2 · [1{x ∈ odd(ψ
∅

2 )} − 1{x ∈ odd(ψ0
1 )}]). (4.42)

Consider the integrand in (4.42). Since ψ
∅

2 has no sources, all odd routes in ψ
∅

2 are
necessarily cycles. If x ∈ odd(ψ

∅

2 ), then x lies in an odd cycle. We may assume that x is
not the endpoint of a bridge, since this event has probability 0. It follows that, on the event
{0 ↔ }, there exists an open path from 0 to  that avoids x (since any path can be re-routed
around the odd cycle of ψ

∅

2 containing x). Therefore, the event {0 x↔ } does not occur, and
hence

E
(
∂ψ0

1 ∂ψ
∅

2 · 1{x ∈ odd(ψ
∅

2 )})

= E
(
∂ψ0

1 ∂ψ
∅

2 · 1{x ∈ odd(ψ
∅

2 )} · 1{0 x↔ }c
)
. (4.43)

If ∂ψ0
1 �= 0 and 0

x↔ , then necessarily x ∈ odd(ψ0
1 ). Hence,

E
(
∂ψ0

1 ∂ψ
∅

2 · 1{x ∈ odd(ψ0
1 )})

= E
(
∂ψ0

1 ∂ψ
∅

2 · 1{x ∈ odd(ψ0
1 )} · 1{0 x↔ }c

)

+ E
(
∂ψ0

1 ∂ψ
∅

2 · 1{0 x↔ }). (4.44)

We wish to switch the sources 0 from ψ1 to ψ2 in the right side of (4.44). For this we
need to adapt some details of the proof of the switching lemma to this situation. The first
step in the proof of that lemma was to condition on the union Q of the bridges and ghost-
bonds of the two colourings; then, the paths from 0 to  in Q were listed in a fixed but
arbitrary order. We are free to choose this ordering in such a way that paths not containing
x have precedence, and we assume henceforth that the ordering is thus chosen. The next
step is to find the earliest open path π , and ‘add π modulo 2’ to both ψ0

1 and ψ
∅

2 . On the

event {0 x↔ }c, this earliest path π does not contain x, by our choice of ordering. Hence,
in the new colouring ψ

∅

1 , x continues to lie in an ‘odd’ interval (recall that, outside π , the
colourings are unchanged by the switching procedure). Therefore,

E
(
∂ψ0

1 ∂ψ
∅

2 · 1{x ∈ odd(ψ0
1 )} · 1{0 x↔ }c

)

= E
(
∂ψ

∅

1 ∂ψ0
2 · 1{x ∈ odd(ψ

∅

1 )} · 1{0 x↔ }c
)
. (4.45)

Relabelling, putting this into (4.44), and subtracting (4.44) from (4.43), we obtain

∂M

∂δ
= − 2

Z2

∫
dx E

(
∂ψ0

1 ∂ψ
∅

2 · 1{0 x↔ }) (4.46)

as required.
Turning to the inequality, let Cx

z denote the set of points that can be reached from z along
open paths not containing x. When calculating the conditional expectation of ∂ψ0

1 ∂ψ
∅

2 ·
1{0 x↔ } given Cx

0 , as in the proof of the GHS inequality, we find that ψ0
1 is a combination
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of two independent colourings, one inside Cx
0 with sources 0x, and one outside Cx

0 with
sources x. As in (4.27), using Lemma 4.4 as there,

E
(
∂ψ0

1 ∂ψ
∅

2 · 1{0 x↔ })= E
(
∂ψ0x

1 ∂ψ
∅

2 〈σx〉K\Cx
0
· 1{0 x↔ })

≤ M · E(∂ψ0x
1 ∂ψ

∅

2 · 1{0 x↔ }). (4.47)

We split the expectation on the right side according to whether or not x ↔ . Clearly,

E
(
∂ψ0x

1 ∂ψ
∅

2 · 1{0 x↔ } · 1{x � })≤ E
(
∂ψ0x

1 ∂ψ
∅

2 · 1{x � }). (4.48)

By Switching Lemma 4.2, the other term satisfies

E
(
∂ψ0x

1 ∂ψ
∅

2 · 1{0 x↔ } · 1{x ↔ })= E
(
∂ψ0

1 ∂ψx
2 · 1{0 x↔ }). (4.49)

We again condition on a cluster, this time Cx
 , to obtain as in (4.47) that

E
(
∂ψ0

1 ∂ψx
2 · 1{0 x↔ })≤ M · E(∂ψ0

1 ∂ψ
∅

2 · 1{0 x↔ }). (4.50)

Combining (4.47), (4.48), (4.50) with (4.46), we obtain by (4.38) that

−∂M

∂δ
≤ 2M

∂M

∂γ
+ M2

(
− ∂M

∂δ

)
, (4.51)

as required. �

5 Proof of Theorem 2.2

In this section we will prove the differential inequality (2.9) which, in combination with the
inequalities of the previous section, will yield information about the critical behaviour of
the space–time Ising model. The proof proceeds roughly as follows. In the random-parity
representation of M = 〈σ0〉, there is a backbone from 0 to  (that is, to some point g ∈ G).
We introduce two new sourceless configurations; depending on how the backbone interacts
with these configurations, the switching lemma allows a decomposition into a combination
of other configurations which, via Theorem 4.10, may be expressed in terms of derivatives
of the magnetization.

Throughout this section we work under Assumption 4.9, that is, we work with a
translation-invariant nearest-neighbour model on a cube in the d-dimensional lattice, while
noting that our conclusions are valid for more general interactions with similar symmetries.
The arguments in this section borrow heavily from [7]. As in Theorem 4.10, the main nov-
elty in the proof concerns connectivity in the ‘vertical’ direction (the term Rv in (5.2)–(5.3)
below).

By Theorem 3.1,

M = 1

Z
E(∂ψ0

1 ) = 1

Z3
E(∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3 ). (5.1)
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Fig. 7 Illustrations of the four
possibilities for ξ ∩ C .
Ghost-bonds in ψ0 are
labelled g. The backbone ξ is
drawn as a solid black line, and
C as a grey rectangle

We shall consider the backbone ξ = ξ(ψ0
1 ) and the open cluster C of  in (ψ

∅

2 ,ψ
∅

3 ,�).
All connectivities will refer to the triple (ψ

∅

2 ,ψ
∅

3 ,�). Note that ξ consists of a single path
with endpoints 0 and . There are four possibilities, illustrated in Fig. 7, for the way in
which ξ , viewed as a directed path from 0 to , interacts with C :

(i) ξ ∩ C is empty,
(ii) 0 ∈ ξ ∩ C ,

(iii) 0 /∈ ξ ∩ C , and ξ first meets C immediately after a bridge,
(iv) 0 /∈ ξ ∩ C , and ξ first meets C at a cut, which necessarily belongs to

ev(ψ
∅

2 ) ∩ ev(ψ
∅

3 ).

Thus,

M = T + R0 + Rh + Rv, (5.2)

where

T = 1

Z3
E
(
∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{ξ ∩ C = ∅}),

R0 = 1

Z3
E
(
∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{0 ↔ }),

Rh = 1

Z3
E
(
∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{first point of ξ ∩ C is at a bridge of ξ}),

Rv = 1

Z3
E
(
∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{first point of ξ ∩ C is a cut}).

(5.3)

We will bound each of these terms in turn.
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By the switching lemma,

R0 = 1

Z3
E
(
∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{0 ↔ })

= 1

Z3
E
(
∂ψ0

1 ∂ψ0
2 ∂ψ0

3

)= M3. (5.4)

Next, we bound T . The letter ξ will always denote the backbone of the first colouring
ψ1, with corresponding sources. Let X denote the location of the ghost-bond that ends ξ .
By conditioning on X,

T = 1

Z3

∫
P (X ∈ dx)E

(
∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{ξ ∩ C = ∅} ∣∣X = x
)

≤ γ

Z3

∫
dx E

(
∂ψ0x

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{ξ ∩ C = ∅}). (5.5)

We study the last expectation by conditioning on C and bringing one of the factors 1/Z

inside. By (3.28)–(3.29) and conditional expectation,

1

Z
E
(
∂ψ0x

1 · 1{ξ ∩ C = ∅} ∣∣C

)

= E
(
Z−1E(∂ψ0x

1 | ξ,C)1{ξ ∩ C = ∅} ∣∣C

)

= E
(
w0x(ξ) · 1{ξ ∩ C = ∅} ∣∣C

)
. (5.6)

By Lemma 4.5,

w0x(ξ) ≤ 2r(ξ)−r ′(ξ)w0x
K\C

(ξ) on {ξ ∩ C = ∅}, (5.7)

where

r(ξ) = r(ξ,K), r ′(ξ) = r(ξ,K \ C).

Using (3.32) and (3.30), we have

E
(
w0x(ξ) · 1{ξ ∩ C = ∅} ∣∣C

)

≤ E
(
2r(ξ)−r ′(ξ)w0x

K\C
(ξ) · 1{ξ ∩ C = ∅} ∣∣C

)

≤ 〈σ0σx〉K\C
. (5.8)

The last equation merits explanation. Recall that ξ = ξ(ψ0x
1 ), and assume ξ ∩ C = ∅.

Apart from the randomization that takes place when ψ0x
1 is one of several valid colourings,

the law of ξ , P (ξ ∈ dν), is a function of the positions of bridges and ghost-bonds along ν

only, that is, the existence of bridges where needed, and the non-existence of ghost-bonds
along ν. By (5.7) and Lemma 4.5, with �K\C := {ν ∈ � : ν ∩ C = ∅} and P the law of ξ ,

E
(
w0x(ξ) · 1{ξ ∩ C = ∅} ∣∣C

)

=
∫

�K\C

w0x(ν)P (dν)

≤
∫

�K\C

2r(ν)−r ′(ν)w0x
K\C

(ν)
(

1
2

)r(ν)
μ(dν)
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for some measure μ, where the factor ( 1
2 )r(ν) arises from the possible existence of more than

one valid colouring. Now, μ is a measure on paths which, by the remark above, depends
only locally on ν, in the sense that μ(dν) depends only on the bridge- and ghost-bond con-
figurations along ν. In particular, the same measure μ governs also the law of the backbone
in the smaller region K \C . More explicitly, by (3.30) with PK\C

the law of the backbone
of the colouring ψ0x

K\C
defined on K \ C , we have

〈σ0σx〉K\C
=
∫

�K\C

w0x
K\C

(ν)PK\C
(dν)

=
∫

�K\C

w0x
K\C

(ν)
(

1
2

)r ′(ν)
μ(dν).

Thus (5.8) follows.
Therefore, by (5.5)–(5.8),

T ≤ γ

Z2

∫
dx E

(
∂ψ

∅

2 ∂ψ
∅

3 〈σ0σx〉K\C
· 1{0 � })

= γ

∫
dx

1

Z2
E
(
∂ψ0x

2 ∂ψ
∅

3 · 1{0 � })

= γ
∂M

∂γ
,

by ‘conditioning on the cluster’ C and Theorem 4.10.
Next, we bound Rh. Suppose that the bridge bringing ξ into C has endpoints X and Y ,

where we take X to be the endpoint not in C . When the bridge XY is removed, the back-
bone ξ consists of two paths: ζ 1 : 0 → X and ζ 2 : Y → . Therefore,

Rh = 1

Z3

∫
P (X ∈ dx)E

(
∂ψ0

1 ∂ψ
∅

2 ∂ψ
∅

3

∣∣X = x
)

≤ λ

Z3

∫
dx
∑

y∼x

E
(
∂ψ

0xy

1 ∂ψ
∅

2 ∂ψ
∅

3 · 1{0 � , y ↔ } · 1{Jξ }
)
,

where ξ = ξ(ψ
0xy

1 ) and

Jξ = {ξ = ζ 1 ◦ ζ 2, ζ 1 : 0 → x, ζ 2 : y → , ζ 1 ∩ C = ∅
}
.

As in (5.6),

Rh ≤ λ

Z2

∫
dx
∑

y∼x

E
(
∂ψ

∅

2 ∂ψ
∅

3 · 1{0 � , y ↔ } · w0xy(ξ) · 1{Jξ }
)
. (5.9)

By Lemmas 3.3(a) and 4.5, on the event Jξ ,

w0xy(ξ) = w0x(ζ 1)w
y

K\ζ 1(ζ
2)

≤ 2r−r ′
w0x

K\C
(ζ 1)w

y

K\ζ 1(ζ
2),
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where r = r(ζ 1,K) and r ′ = r(ζ 1,K \ C). By Lemma 4.4 and the reasoning after (5.8),

E
(
w0xy(ξ) · 1{Jξ }

∣∣ ζ 1,C

)≤ 2r−r ′
w0x

K\C
(ζ 1) · 〈σy〉K\ζ 1

≤ M · 2r−r ′
w0x

K\C
(ζ 1),

so that, similarly,

E
(
w0xy(ξ) · 1{Jξ }

∣∣C

)≤ M · 〈σ0σx〉K\C
. (5.10)

We substitute into the summand in (5.9), using the switching lemma, conditioning on the
cluster C , and the bound 〈σy〉C

≤ M , to obtain the upper bound

M · E(∂ψ
∅

2 ∂ψ
∅

3 · 1{0 � , y ↔ } · 〈σ0σx〉K\C

)

= M · E(∂ψ
y

2 ∂ψ
y

3 · 1{0 � } · 〈σ0σx〉K\C

)

= M · E(∂ψ
0xy

2 ∂ψ
∅

3 〈σy〉C
· 1{0 � })

≤ M2 · E(∂ψ
0xy

2 ∂ψ
∅

3 · 1{0 � }).
Hence, by (4.39),

Rh ≤ λM2 1

Z2

∫
dx
∑

y∼x

E
(
∂ψ

0xy

2 ∂ψ
∅

3 1{0 � })

= 2λM2 ∂M

∂λ
.

Finally, we bound Rv . Let X ∈ � ∩ ev(ψ
∅

2 ) ∩ ev(ψ
∅

3 ) be the first point of ξ in C .
In a manner similar to that used for Rh at (5.9) above, and by cutting the backbone ξ at the
point x,

Rv ≤ 1

Z2

∫
P (X ∈ dx)E

(
∂ψ

∅

2 ∂ψ
∅

3 · 1{0 � , x ↔ } · w0(ξ) · 1{Jξ }
)
, (5.11)

where

Jξ = 1
{
ξ = ζ

1 ◦ ζ
2
, ζ

1 : 0 → x, ζ
2 : x → , ζ 1 ∩ C = ∅

}
.

As in (5.10),

E(w0(ξ) · 1{Jξ } | C) = E
(
E(w0(ξ) · 1{Jξ } | ζ 1

,C)
∣∣C

)

≤ E
(〈σ0σx〉K\C

· 〈σx〉K\ζ 1

∣∣C

)

≤ 〈σ0σx〉K\C
· M.

By (5.11) therefore,

Rv ≤ M
1

Z2

∫
P (X ∈ dx)E

(
∂ψ

∅

2 ∂ψ
∅

3 · 1{0 � , x ↔ }〈σ0σx〉K\C

)
.

By removing the cut at x, the origin 0 becomes connected to , but only via x. Thus,

Rv ≤ 4δM
1

Z2

∫
dx E

(
∂ψ

∅

2 ∂ψ
∅

3 · 1{0 x↔ , x ↔ }〈σ0σx〉K\Cx


)
,
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where Cx
 is the set of points reached from  along open paths not containing x. By the

switching lemma, and conditioning twice on the cluster Cx
 ,

Rv ≤ 4δM
1

Z2

∫
dx E

(
∂ψx

2 ∂ψx
3 · 1{0 x↔ }〈σ0σx〉K\Cx



)

= 4δM
1

Z2

∫
dx E

(
∂ψ0

2 ∂ψx
3 · 1{0 x↔ })

= 4δM
1

Z2

∫
dx E

(
∂ψ0

2 ∂ψ
∅

3 · 1{0 x↔ }〈σx〉Cx


)

≤ 4δM2 1

Z2

∫
dx E

(
∂ψ0

2 ∂ψ
∅

3 · 1{0 x↔ })

= −2δM2 ∂M

∂δ
,

by (4.40), as required.

6 Consequences of the Inequalities

In this section we formulate our principal results, and we indicate how the differential in-
equalities of Theorems 2.2 and 4.10 may be used to prove them. The arguments used are
relatively straightforward adaptations of arguments developed for the classical Ising model,
many of which are summarized in [18]. In the interests of brevity, we shall omit many steps,
and we hope that readers familiar with the literature will be able to complete the gaps.
Full details for the current model may be found in [12]. We work under Assumption 4.9
throughout this section, unless otherwise stated. It is sometimes inconvenient to use peri-
odic boundary conditions, and we revert to the free condition where necessary.

We shall consider the infinite-volume limit as L ↑ Z
d ; the ground state is obtained by

letting β → ∞ also. Let n be a positive integer, and set Ln = [−n,n]d with periodic bound-
ary condition. It is convenient (and equivalent) to work instead on the translated space
�β

n := [−n,n]d × [− 1
2β, 1

2β], and we assume this henceforth. By this device, the limit
process as n,β → ∞ inhabits Z

d × R rather than Z
d × R+. The symbol β will appear

as superscript in the following; the superscript ∞ is to be interpreted as the ground state.
Let 0 = (0,0) and

Mβ
n (λ, δ, γ ) = 〈σ0〉βLn

be the magnetization in �β
n , noting that Mβ

n ≡ 0 when γ = 0.
By convexity-of-pressure arguments, as developed in [30], the limits

Mβ := lim
n→∞Mβ

n , M∞ := lim
n→∞ lim

β→∞Mβ
n , (6.1)

exist for Lebesgue-a.e. γ ≥ 0. Moreover, using the GHS inequality as in [34] (which implies
the differentiability of the pressure function in γ whenever γ > 0) and the results of [30],
we find that the limits (6.1) exist for all γ > 0, and are independent of the order of
the limits. Note that this argument does not rely on a Lee–Yang theorem. We have that
Mβ(λ, δ,0) = 0.
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By a standard re-scaling argument, M∞ depends only on the ratios λ/δ and γ /δ, and
thus we shall set δ = 1, ρ = λ/δ, and write

Mβ(ρ,γ ) = Mβ(ρ,1, γ ), β ∈ (0,∞],

with a similar notation for other functions.
As in [30], when γ > 0, there exists a unique equilibrium state at (ρ, γ ). That is, the

limits

〈σA〉β := lim
n→∞〈σA〉βn , 〈σA〉∞ := lim

n,β→∞〈σA〉βn ,

exist for all A, where 〈·〉n := 〈·〉Ln , and the limits are independent of the choice of boundary
condition. It follows that the infinite-volume probability measure exists (this is a standard
exercise using the Skorohod topology, see [10, 19]). A phase transition is manifested by
non-uniqueness of the equilibrium state, and this can therefore occur only when γ = 0. Let
〈·〉β+ be the limiting state of 〈·〉β as γ ↓ 0, and

M
β
+(ρ) := lim

γ↓0
Mβ(ρ,γ ).

As in [30], there is non-uniqueness at (ρ,0) if and only if M
β
+(ρ) > 0, and this motivates

the definition

ρβ
c := inf{ρ > 0 : Mβ

+(ρ) > 0}, (6.2)

see also (1.3) and (1.5). We shall have need later for the infinite-volume limit 〈·〉f,β , as
n → ∞, with free boundary condition in the Z

d direction. Note that

〈·〉f,β
γ=0 = 〈·〉βγ=0 = 〈·〉β+ if M

β
+(ρ) = 0. (6.3)

The superscript ‘f’ shall always indicate this free boundary condition.

Remark 6.1 It is sometimes convenient to work with the random-cluster (or FK) representa-
tion of the space–time Ising model, as in [9, 25, 27]. For β ∈ (0,∞), let φb,β

ρ , b = 0,1, be
the q = 2 random-cluster measures arising as the limit as n → ∞ of the continuum random-
cluster measure on Ln × [− 1

2β, 1
2β] with respectively free/wired boundary condition in the

spatial direction. (There are no ghost-bonds, in that γ = 0.) We define φb,∞
ρ similarly. As

discussed in [9, 27], and in [23] for discrete lattices, these limits exist, and are equal for all
but countably many values of ρ. (They are presumably equal for all ρ �= ρc, using arguments
of [8, 13, 23], but we do not pursue this further here.) Furthermore, they are non-decreasing
in ρ, and, in particular,

φ1,β
ρ ≤ φ

0,β

ρ′ , ρ < ρ ′, (6.4)

where ≤ denotes stochastic ordering (see [27]). In the usual manner, for β ∈ (0,∞],

φ1,β
ρ (x ↔ y) = 〈σxσy〉β+, φ1,β

ρ (0 ↔ ∞) = M+(ρ), (6.5)

where ↔ denotes an open connection in the random-cluster model. It may be seen as in
[23, Theorems 4.19, 4.23] that the φb,β

ρ have trivial tail σ -fields, and are thus mixing and
ergodic. Therefore, the φb,β

ρ possess (a.s.) no more than one unbounded cluster, by the



Phase Transition of the Quantum Ising Model 267

Burton–Keane argument, [14, 23]. By (6.5), the FKG inequality, and the uniqueness of any
unbounded cluster,

〈σxσy〉β+ ≥ φ1,β
ρ (x ↔ ∞)φ1,β

ρ (y ↔ ∞) = M
β
+(ρ)2. (6.6)

Let β ∈ (0,∞). Using the convexity of Lemma 4.6 as in [18], the derivative ∂Mβ/∂γ

exists for almost every γ ∈ (0,∞), and, when this holds,

χβ
n (ρ, γ ) := ∂Mβ

n

∂γ
→ χ(ρ, γ ) := ∂Mβ

∂γ
< ∞. (6.7)

The corresponding conclusion holds also as n,β → ∞. Furthermore, the limits

χ
β
+(ρ) := lim

γ↓0
χβ(ρ, γ ), β ∈ (0,∞],

exist when taken along suitable sequences.
The limit

χ f,β(ρ,0) := lim
n→∞

(
∂M f,β

n

∂γ

∣∣∣∣
γ=0

)

= lim
n→∞

∫

�
β
n

〈σ0σx〉f,β
n,γ=0 dx =

∫
〈σ0σx〉f,β

γ=0 dx (6.8)

exists by monotone convergence, see Lemma 4.4. By Lemma 4.6,

χ
β
+(ρ) ≥ χ f,β(ρ,0) whenever M

β
+(ρ) = 0, β ∈ (0,∞]. (6.9)

Let

ρβ
s := inf{ρ > 0 : χ f,β(ρ,0) = ∞}, β ∈ (0,∞]. (6.10)

By (6.4)–(6.5) and the monotonicity of χ f,β(ρ,0),

ρβ
s ≤ ρβ

c . (6.11)

By the discussion around (6.2)–(6.3), there is a unique equilibrium state when γ = 0 and
ρ < ρ

β
c . We shall see in Theorem 6.3 that χ f,β(ρ

β
s ,0) = ∞.

For x ∈ Z
d × R, let ‖x‖ denote the supremum norm of x.

Theorem 6.2 Let β ∈ (0,∞] and ρ < ρ
β
s . There exists α = αβ(ρ) > 0 such that

〈σ0σx〉β+ ≤ e−α‖x‖, x ∈ Z
d × R. (6.12)

Proof Fix β ∈ (0,∞) and γ = 0, and let ρ < ρ
β
s , so that (6.3) applies. Therefore,

χ f,β(ρ,0) =
∫

Zd×[− 1
2 β, 1

2 β]
〈σ0σx〉β dx =

∑

k≥1

∫

C
β
k

〈σ0σx〉β dx, (6.13)

where C
β

k := �
β

k \ �
β

k−1. Since ρ < ρ
β
s , the last summation converges, whence, for suffi-

ciently large k,
∫

C
β
k

〈σ0σx〉β dx < e−8. (6.14)
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The result now follows in the usual manner by the Simon inequality, Lemma 4.7, with the
1-fat separating sets C

β

k . A similar argument holds when β = ∞. Further discussion of the
method may be found at [23, Corollary 9.38]. �

Let β ∈ (0,∞], γ = 0 and define the mass

mβ(ρ) := lim inf
|x|→∞

(
− 1

‖x‖ log〈σ0σx〉βρ
)

. (6.15)

By Theorem 6.2 and (6.6),

mβ(ρ)

{
> 0, if ρ < ρ

β
s ,

= 0, if ρ > ρ
β
c .

(6.16)

Theorem 6.3 Except when d = 1 and β < ∞, mβ(ρ
β
s ) = 0 and χ f,β(ρ

β
s ,0) = ∞.

Remark 6.4 The manner of the divergence of the susceptibility χ may be studied via the
so-called Lebowitz inequalities of [29]. Such inequalities are easily proved for the quantum
Ising model using the switching lemma.

Proof Let d ≥ 2, γ = 0, and fix β ∈ (0,∞). We use the Lieb inequality, Lemma 4.8, and
the argument of [31, 35], see also [23, Corollary 9.46]. It is necessary and sufficient for
mβ(ρ) > 0 that

∫

C
β
n

〈σ0σx〉f,β
n,ρ dx < e−8 for some n. (6.17)

Necessity holds because the integrand is no greater than 〈σ0σx〉β . Sufficiency follows from
Lemma 4.8, as in the proof of Theorem 6.2.

By (2.4),

∂

∂ρ
〈σ0σx〉f,β

n,ρ = 1

2

∫

�
β
n

dy
∑

z∼y

〈σ0σx;σyσz〉f,β
n,ρ

≤ dβ(2n + 1)d .

Therefore, if ρ ′ > ρ,
∫

C
β
n

〈σ0σx〉f,β
n,ρ′ dx ≤ d[β(2n + 1)d ]2(ρ ′ − ρ) +

∫

C
β
n

〈σ0σx〉f,β
n,ρ dx. (6.18)

Hence, if (6.17) holds for some ρ, then it holds for ρ ′ when ρ ′ − ρ > 0 is sufficiently small.
Suppose mβ(ρ

β
s ) > 0. Then mβ(ρ ′) > 0 for some ρ ′ > ρ

β
s , which contradicts χ f,β(ρ ′,0) =

∞, and the first claim of the theorem follows. A similar argument holds when d ≥ 1 and
β = ∞. The second claim follows similarly: if χ f,β(ρ

β
s ,0) < ∞, then (6.17) holds with

ρ = ρ
β
s , whence mβ(ρ ′) > 0 and χ f,β(ρ ′,0) < ∞ for some ρ ′ > ρ

β
s , a contradiction. (See

also [2].) �

We are now ready to state the main results. The inequalities of Theorems 4.10 and 2.2
may be combined to obtain

Mβ
n ≤ (Mβ

n )3 + χβ
n ·
(

γ + 4dλ(Mβ
n )3 + 4δ

(Mβ
n )3

1 − (M
β
n )2

)
. (6.19)
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Using these inequalities and the facts stated above, it is straightforward to adapt the argu-
ments of [4, Lemmas 4.1, 5.1] (see also [7, 22]) to prove the following. We omit the proofs.

Theorem 6.5 There are constants c1, c2 > 0 such that, for β ∈ (0,∞],

Mβ(ρs, γ ) ≥ c1γ
1/3, (6.20)

M
β
+(ρ) ≥ c2(ρ − ρβ

s )1/2, (6.21)

for small positive γ and ρ − ρ
β
s , respectively.

This is vacuous when d = 1 and β < ∞; see (1.5). The exponents in the above in-
equalities are presumably sharp in the corresponding mean-field model (see [3, 7] and Re-
mark 6.7). It is standard that a number of important results follow from Theorem 6.5, some
of which we state here.

Theorem 6.6 For d ≥ 1 and β ∈ (0,∞], we have that ρ
β
c = ρ

β
s .

Proof Except when d = 1 and β < ∞, this is immediate from (6.11) and (6.21). In the
remaining case, ρ

β
c = ρ

β
s = ∞. �

Remark 6.7 Let β ∈ (0,∞]. Except when d = 1 and β < ∞, one may conjecture the exis-
tence of exponents a = aβ(d), b = bβ(d) such that

M
β
+(ρ) = (ρ − ρβ

c )(1+o(1))a as ρ ↓ ρ
β
c , (6.22)

Mβ(ρβ
c , γ ) = γ (1+o(1))/b as γ ↓ 0. (6.23)

(We do not exclude the possibility that, when β < ∞, the values of the exponents depend
also on the value of δ.) Theorem 6.5 would then imply that a ≤ 1

2 and b ≥ 3. In [16, Theo-
rem 3.2] it is proved for the ground-state quantum Curie–Weiss, or mean-field, model that
the corresponding a = 1

2 . It may be conjectured (as proved for the classical Ising model
in [3]) that the values a = 1

2 and b = 3 are attained for the space–time Ising model on
Z

d × [− 1
2β, 1

2β] for d sufficiently large, that is, when either β < ∞ and d ≥ 4, or β = ∞
and d ≥ 3.

Finally, a note about (2.14). The random-cluster measure corresponding to the quantum
Ising model is periodic in both Z

d and β directions, and this complicates the infinite-volume
limit. Since the periodic random-cluster measure dominates the free random-cluster mea-
sure, for β ∈ (0,∞), as in (6.4) and (6.6),

lim inf
n→∞ τ

β

Ln
(u, v) ≥ 〈σ(u,0)σ(v,0)〉β+,ρ′ for ρ ′ < ρ

→ M
β
+(ρ−)2 as ρ ′ ↑ ρ,

and a similar argument holds in the ground state also.
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7 In One Dimension

The space–time version of the quantum Ising model on Z is two-dimensional, living on
Z × R. In the light of (1.5), we shall study only the ground state, and we shall suppress the
superscript ∞. One may adapt some of the special arguments for two-dimensional models
based on planar duality. One consequence is the following.

Theorem 7.1 Let d = 1. Then ρc = 2, and the transition is of second order in that
M+(2) = 0.

We mention two applications of this theorem. Consider first a ‘star-like’ graph, compris-
ing finitely many copies of Z, pairs of which may intersect at single points. It is shown
in [11], using Theorem 7.1, that the quantum Ising model on such a graph has critical value
ρc = 2.

Secondly, in an account [27] of so-called ‘entanglement’ in the quantum Ising model
on the subset [−m,m] of Z, it was shown that the reduced density matrix νL

m of the block
[−L,L] satisfies

‖νL
m − νL

n ‖ ≤ min{2,CLαe−cm}, 2 ≤ m < n < ∞,

where C and α are constants depending on ρ = λ/δ, and c = c(ρ) > 0 whenever ρ < 1.
Using Theorems 6.2 and 7.1, we have that c(ρ) > 0 if and only if ρ < ρc = 2.

Proof We sketch the proof here. It uses the random-cluster (or FK) representation of the
equilibrium state 〈·〉+, see Remark 6.1. Writing φ0

ρ (respectively, φ1
ρ ) for the free (respec-

tively, wired) q = 2 random-cluster measure, we have as in (6.5) that

〈σxσy〉+ = φ1
ρ(x ↔ y), 〈σx〉+ = φ1

ρ(x ↔ ∞). (7.1)

Planar duality is a standard tool in two-dimensional models, and it applies to the random-
cluster model on Z × R. The details are similar to those in related systems, and the reader
is referred to [5, 23, 25] in this regard. There is a standard computation that shows that, in a
certain sense that is sensitive to the geometry of the configurations, φ0

ρ and φ1
4/ρ form a dual

pair of measures.
The argument developed by Zhang for percolation (see [22, 23]) may be adapted to the

current setting to obtain that ρc ≥ 2. Roughly speaking, this is as follows. Suppose that
ρc < 2, so that there exists, φ0

2 -almost-surely, an unbounded cluster. As in Remark 6.1,
for b = 0,1, there exists, φb

2 -almost-surely, a unique unbounded cluster. This implies that
both the primal and dual processes at ρ = 2 contain unbounded clusters, a possibility that
Zhang’s construction shows to be contradictory. The argument so far uses no facts proved in
the current paper, and it yields that

φ0
2(0 ↔ ∞) = 0. (7.2)

We show next that ρc ≤ 2, following the method developed for percolation to be found
in [22, 23]. Suppose that ρc > 2. By the above duality, one may find a box of side-length
n such that: the φ1

2 -probability of a crossing of this box is bounded away from 0 uniformly
in n. By (7.1) and Theorem 6.2, this probability decays to zero in the manner of Cne−αn as
n → ∞, a contradiction.
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We show finally that M+(2) = 0 by adapting a simple argument presented by Werner
in [37] for the classical Ising model on Z

2. Certain geometrical details are omitted. Let π2

be the Ising state obtained from a realization of φ0
2 by labelling each open cluster +1 with

probability 1
2 , and otherwise −1. By (7.2) and a standard argument based on the coupling

with the random-cluster measure φ0
2 (see [24, Exercise 8.14]), π2 is ergodic. The Ising state

π+
2 is obtained similarly from the random-cluster measure φ1

2 , with the difference that any
infinite cluster is invariably assigned spin +1.

We adopt the harmless convention that, for any spin-configuration σ on Z×R, the subset
labelled +1 is closed; the labelling is well-defined except at deaths, and we choose to label
a death a with the spin +1 if and only if at least one of the intervals abutting a is labelled
+1.

Let σ be a spin-configuration on Z × R. The binary relations
±↔ are defined as follows.

A path of Z×R is a self-avoiding path of R
2 that: traverses a finite number of line-segments

of Z × R, and is permitted to connect them by passing between any two points of the form
(u, t), (u ± 1, t). A path is called a (+)path (respectively, (−)path) if all its elements are

labelled +1 (respectively, −1). For x, y ∈ Z × R, we write x
+↔ y (respectively, x

−↔ y)
if there exists a (+)path (respectively, (−)path) with endpoints x, y. Let N+ (respectively,
N−) be the number of unbounded + (respectively, −) Ising clusters with connectivity re-

lation
+↔ (respectively,

−↔). By the Burton–Keane argument, either π2(N
+ = 1) = 1 or

π2(N
+ = 0) = 1. The former entails also that π2(N

− = 1) = 1, and this is impossible by
another use of Zhang’s argument. Therefore,

π2(N
± = 0) = 1. (7.3)

There is a standard argument for deducing π2 = π+
2 from (7.3), of which the idea is

roughly as follows. (See [8] or [23, Theorem 5.33] for examples of similar arguments applied
to the random-cluster model.) Let �n = [−n,n]2, viewed as a subset of Z×R. The boundary
∂�n is defined in the usual way as the intersection of �n with the subset R

2 \ (−n,n)2 of

R
2. By (7.3), for given m, and for ε > 0 and sufficiently large n, the event Am,n = {�m+1

−↔
∂�n}c satisfies π2(Am,n) > 1 − ε.

Let Mn be the subset of �n containing all points connected to ∂�n by (−)paths of �n.
Thus Mn is a union of maximal intervals, and each endpoint of such an interval either lies in
∂�n (and is labelled −1), or lies in �n \ ∂�n (and is labelled +1). Let �Mn be the set of all
points (u, t) ∈ Z × R of �n \ Mn satisfying: either (i) (u, t) /∈ ∂�n and (u, t) is an endpoint
of a maximal interval of Mn, or (ii) there exists e ∈ {−1,+1} such that (u, t + e) ∈ Mn. By
the definition of Mn, every point in �Mn is labelled +1.

Let m < n, and let In be the set of all points in �n reachable from �m along paths of
�n \ �Mn. The random set In is given in terms of Mn, and therefore In is measurable on
the spin configuration of its complement �n \ In. Given In, the spin configuration on In is a
space–time Ising model with + boundary conditions. By the FKG inequality, conditional on
In (and the event Am,n), the conditional π2-measure on �m is stochastically greater than π+

2 .
By passing to a limit, we obtain that π2 ≥ π+

2 . Since π2 ≤ π+
2 by elementary considerations

of FKG type, we deduce that π2 = π+
2 as claimed.

One way to conclude that M+(2) = 0 is to use the random-cluster representation again.
By (7.2) and the above,

φ0
2(0 ↔ ∞) = φ1

2(0 ↔ ∞) = 0,

whence M+(2) ≤ φ1
2(0 ↔ ∞) = 0. �
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